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ABSTRACT 
Inventories of manually compiled dictionaries usually serve as a 
source for word senses. However, they often include many rare 
senses while missing corpus/domain-specific senses. We present a 
clustering algorithm called CBC (Clustering By Committee) that 
automatically discovers word senses from text. It initially 
discovers a set of tight clusters called committees that are well 
scattered in the similarity space. The centroid of the members of a 
committee is used as the feature vector of the cluster. We proceed 
by assigning words to their most similar clusters. After assigning 
an element to a cluster, we remove their overlapping features 
from the element. This allows CBC to discover the less frequent 
senses of a word and to avoid discovering duplicate senses. Each 
cluster that a word belongs to represents one of its senses. We 
also present an evaluation methodology for automatically 
measuring the precision and recall of discovered senses. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval---Clustering. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Word sense discovery, clustering, evaluation, machine learning. 

1. INTRODUCTION 
Using word senses versus word forms is useful in many 
applications such as information retrieval [20], machine 
translation [5] and question-answering [16]. In previous 
approaches, word senses are usually defined using a manually 
constructed lexicon. There are several disadvantages associated 
with these word senses. First, manually created lexicons often 
contain rare senses. For example, WordNet 1.5 [15] (hereon 
referred to as WordNet) included a sense of computer that means 
�the person who computes�. Using WordNet to expand queries to 
an information retrieval system, the expansion of computer 

includes words like estimator and reckoner. The second problem 
with these lexicons is that they miss many domain specific senses. 
For example, WordNet misses the user-interface-object sense of 
the word dialog (as often used in software manuals). 

The meaning of an unknown word can often be inferred from its 
context. Consider the following sentences: 
A bottle of tezgüno is on the table. 
Everyone likes tezgüno. 
Tezgüno makes you drunk. 
We make tezgüno out of corn. 

The contexts in which the word tezgüno is used suggest that 
tezgüno may be a kind of alcoholic beverage. This is because 
other alcoholic beverages tend to occur in the same contexts as 
tezgüno. The intuition is that words that occur in the same 
contexts tend to be similar. This is known as the Distributional 
Hypothesis [3]. There have been many approaches to compute the 
similarity between words based on their distribution in a corpus 
[4][8][12]. The output of these programs is a ranked list of similar 
words to each word. For example, [12] outputs the following 
similar words for wine and suit: 
wine: beer, white wine, red wine, Chardonnay, 

champagne, fruit, food, coffee, juice, 
Cabernet, cognac, vinegar, Pinot noir, 
milk, vodka,… 

suit: lawsuit, jacket, shirt, pant, dress, 
case, sweater, coat, trouser, claim, 
business suit, blouse, skirt, 
litigation, … 

The similar words of wine represent the meaning of wine. 
However, the similar words of suit represent a mixture of its 
clothing and litigation senses. Such lists of similar words do not 
distinguish between the multiple senses of polysemous words. 

The algorithm we present in this paper automatically discovers 
word senses by clustering words according to their distributional 
similarity. Each cluster that a word belongs to corresponds to a 
sense of the word. Consider the following sample outputs from 
our algorithm:  

(suit 
Nq34 0.39 (blouse, slack, legging, 

sweater) 
Nq137 0.20 (lawsuit, allegation, case, 

charge) 
) 
(plant 
Nq215 0.41 (plant, factory, facility, 

refinery) 
Nq235 0.20 (shrub, ground cover, 

perennial, bulb) 
) 
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(heart 
Nq72 0.27 (kidney, bone marrow, marrow, 

liver) 
Nq866 0.17 (psyche, consciousness, soul, 

mind) 
) 

Each entry shows the clusters to which the headword belongs. 
Nq34, Nq137, � are automatically generated names for the 
clusters. The number after each cluster name is the similarity 
between the cluster and the headword (i.e. suit, plant and heart). 
The lists of words are the top-4 most similar members to the 
cluster centroid. Each cluster corresponds to a sense of the 
headword. For example, Nq34 corresponds to the clothing sense 
of suit and Nq137 corresponds to the litigation sense of suit. 

In this paper, we present a clustering algorithm, CBC (Clustering 
By Committee), in which the centroid of a cluster is constructed 
by averaging the feature vectors of a subset of the cluster 
members. The subset is viewed as a committee that determines 
which other elements belong to the cluster. By carefully choosing 
committee members, the features of the centroid tend to be the 
more typical features of the target class. 

We also propose an automatic evaluation methodology for senses 
discovered by clustering algorithms. Using the senses in 
WordNet, we measure the precision of a system�s discovered 
senses and the recall of the senses it should discover. 

2. RELATED WORK 
Clustering algorithms are generally categorized as hierarchical 
and partitional. In hierarchical agglomerative algorithms, clusters 
are constructed by iteratively merging the most similar clusters. 
These algorithms differ in how they compute cluster similarity. In 
single-link clustering, the similarity between two clusters is the 
similarity between their most similar members while complete-
link clustering uses the similarity between their least similar 
members. Average-link clustering computes this similarity as the 
average similarity between all pairs of elements across clusters. 
The complexity of these algorithms is O(n2logn), where n is the 
number of elements to be clustered [6]. 

Chameleon is a hierarchical algorithm that employs dynamic 
modeling to improve clustering quality [7]. When merging two 
clusters, one might consider the sum of the similarities between 
pairs of elements across the clusters (e.g. average-link clustering). 
A drawback of this approach is that the existence of a single pair 
of very similar elements might unduly cause the merger of two 
clusters. An alternative considers the number of pairs of elements 
whose similarity exceeds a certain threshold [3]. However, this 
may cause undesirable mergers when there are a large number of 
pairs whose similarities barely exceed the threshold. Chameleon 
clustering combines the two approaches. 

K-means clustering is often used on large data sets since its 
complexity is linear in n, the number of elements to be clustered. 
K-means is a family of partitional clustering algorithms that 
iteratively assigns each element to one of K clusters according to 
the centroid closest to it and recomputes the centroid of each 
cluster as the average of the cluster�s elements. However, K-
means has complexity O(K×T×n) and is efficient for many 
clustering tasks. Because the initial centroids are randomly 
selected, the resulting clusters vary in quality. Some sets of initial 
centroids lead to poor convergence rates or poor cluster quality. 

Bisecting K-means [19], a variation of K-means, begins with a set 
containing one large cluster consisting of every element and 
iteratively picks the largest cluster in the set, splits it into two 
clusters and replaces it by the split clusters. Splitting a cluster 
consists of applying the basic K-means algorithm α times with 
K=2 and keeping the split that has the highest average element-
centroid similarity. 

Hybrid clustering algorithms combine hierarchical and partitional 
algorithms in an attempt to have the high quality of hierarchical 
algorithms with the efficiency of partitional algorithms. Buckshot 
[1] addresses the problem of randomly selecting initial centroids 
in K-means by combining it with average-link clustering. Cutting 
et al. claim its clusters are comparable in quality to hierarchical 
algorithms but with a lower complexity. Buckshot first applies 
average-link to a random sample of n  elements to generate K 
clusters. It then uses the centroids of the clusters as the initial K 
centroids of K-means clustering. The sample size counterbalances 
the quadratic running time of average-link to make Buckshot 
efficient: O(K×T×n + nlogn). The parameters K and T are usually 
considered to be small numbers. 

CBC is a descendent of UNICON [13], which also uses small and 
tight clusters to construct initial centroids. We compare them in 
Section 4.4 after presenting the CBC algorithm. 

3. WORD SIMILARITY 
Following [12], we represent each word by a feature vector. Each 
feature corresponds to a context in which the word occurs. For 
example, �sip __� is a verb-object context. If the word wine 
occurred in this context, the context is a feature of wine. The 
value of the feature is the pointwise mutual information [14] 
between the feature and the word. Let c be a context and Fc(w) be 
the frequency count of a word w occurring in context c. The 
pointwise mutual information, miw,c, between c and w is defined 
as: 
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We compute the similarity between two words wi and wj using the 
cosine coefficient [17] of their mutual information vectors: 
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4. ALGORITHM 
CBC consists of three phases. In Phase I, we compute each 
element�s top-k similar elements. In our experiments, we used k = 
10. In Phase II, we construct a collection of tight clusters, where 
the elements of each cluster form a committee. The algorithm 
tries to form as many committees as possible on the condition that 
each newly formed committee is not very similar to any existing 
committee. If the condition is violated, the committee is simply 
discarded. In the final phase of the algorithm, each element e is 
assigned to its most similar clusters. 

4.1 Phase I: Find top-similar elements 
Computing the complete similarity matrix between pairs of 
elements is obviously quadratic. However, one can dramatically 
reduce the running time by taking advantage of the fact that the 
feature vector is sparse. By indexing the features, one can retrieve 
the set of elements that have a given feature. To compute the top 
similar elements of an element e, we first sort the features 
according to their pointwise mutual information values and then 
only consider a subset of the features with highest mutual 
information. Finally, we compute the pairwise similarity between 
e and the elements that share a feature from this subset. Since 
high mutual information features tend not to occur in many 
elements, we only need to compute a fraction of the possible 
pairwise combinations. Using this heuristic, similar words that 
share only low mutual information features will be missed by our 
algorithm. However, in our experiments, this had no visible 
impact on cluster quality. 

4.2 Phase II: Find committees 
The second phase of the clustering algorithm recursively finds 
tight clusters scattered in the similarity space. In each recursive 
step, the algorithm finds a set of tight clusters, called committees, 
and identifies residue elements that are not covered by any 
committee. We say a committee covers an element if the 
element�s similarity to the centroid of the committee exceeds 
some high similarity threshold. The algorithm then recursively 
attempts to find more committees among the residue elements. 
The output of the algorithm is the union of all committees found 
in each recursive step. The details of Phase II are presented in 
Figure 1. 

In Step 1, the score reflects a preference for bigger and tighter 
clusters. Step 2 gives preference to higher quality clusters in Step 
3, where a cluster is only kept if its similarity to all previously 
kept clusters is below a fixed threshold. In our experiments, we 
set θ1 = 0.35. Step 4 terminates the recursion if no committee is 
found in the previous step. The residue elements are identified in 
Step 5 and if no residues are found, the algorithm terminates; 
otherwise, we recursively apply the algorithm to the residue 
elements. 

Each committee that is discovered in this phase defines one of the 
final output clusters of the algorithm. 

4.3 Phase III: Assign elements to clusters 
In Phase III, each element e is assigned to its most similar clusters 
in the following way: 

let C be a list of clusters initially empty 
let S be the top-200 similar clusters to e 

while S is not empty { 
let c∈S be the most similar cluster to e 
if the similarity(e, c) < σ 
exit the loop 

if c is not similar to any cluster in C { 
assign e to c 
remove from e its features that overlap 
with the features of c; 

} 
remove c from S 

} 

When computing the similarity between a cluster and an element 
(or another cluster) we use the centroid of committee members as 
the representation for the cluster. This phase resembles K-means 
in that elements are assigned to their closest centroids. Unlike K-
means, the number of clusters is not fixed and the centroids do not 
change (i.e. when an element is added to a cluster, it is not added 
to the committee of the cluster). 

The key to the algorithm for discovering senses is that once an 
element e is assigned to a cluster c, the intersecting features 

Input: A list of elements E to be clustered, a similarity 
database S from Phase I, thresholds θ1 and θ2. 

Step 1: For each element e ∈ E 
  Cluster the top similar elements of e from S using 

average-link clustering. 
  For each cluster discovered c compute the following 

score: |c| × avgsim(c), where |c| is the number of 
elements in c and avgsim(c) is the average 
pairwise similarity between elements in c. 

  Store the highest-scoring cluster in a list L. 
Step 2: Sort the clusters in L in descending order of their 

scores. 

Step 3: Let C be a list of committees, initially empty. 
  For each cluster c ∈ L in sorted order 
  Compute the centroid of c by averaging the 

frequency vectors of its elements and computing 
the mutual information vector of the centroid in 
the same way as we did for individual elements.  

  If c�s similarity to the centroid of each committee 
previously added to C is below a threshold θ1, add 
c to C. 

Step 4: If C is empty, we are done and return C. 

Step 5: For each element e ∈ E 
  If e�s similarity to every committee in C is below 

threshold θ2, add e to a list of residues R. 
  

Step 6: If R is empty, we are done and return C. 
  Otherwise, return the union of C and the output of a 

recursive call to Phase II using the same input 
except replacing E with R. 

Output: a list of committees. 

Figure 1. Phase II of CBC. 



   

 

between e and c are removed from e. This allows CBC to discover 
the less frequent senses of a word and to avoid discovering 
duplicate senses. 

4.4 Comparison with UNICON 
UNICON [13] also constructs cluster centroids using a small set 
of similar elements, like the committees in CBC. 

One of the main differences between UNICON and CBC is that 
UNICON only guarantees that the committees do not have 
overlapping members. However, the centroids of two committees 
may still be quite similar. UNICON deals with this problem by 
merging such clusters. In contrast, Step 2 in Phase II of CBC only 
outputs a committee if its centroid is not similar to any previously 
output committee. 

Another main difference between UNICON and CBC is in Phase 
III of CBC. UNICON has difficulty discovering senses of a word 
when this word has a dominating sense. For example, in the 
newspaper corpus that we used in our experiments, the factory 
sense of plant is used much more frequently than its life sense. 
Consequently, the majority of the features of the word plant are 
related to its factory sense. This is evidenced in the following top-
30 most similar words of plant.  
facility, factory, reactor, refinery, power 
plant, site, manufacturing plant, tree, 
building, complex, landfill, dump, project, 
mill, airport, station, farm, operation, 
warehouse, company, home, center, lab, store, 
industry, park, house, business, incinerator 

All of the above, except the word tree, are related to the factory 
sense. Even though UNICON generated a cluster 
ground cover, perennial, shrub, bulb, annual, 
wildflower, shrubbery, fern, grass, ... 

the similarity between plant and this cluster is very low. 

On the other hand, CBC removes the factory related features from 
the feature vector of plant after it is assigned to the factory 
cluster. As a result, the similarity between the {ground cover, 
perennial, …} cluster and the revised feature vector of plant 
becomes much higher.  

5. EVALUATION METHODOLOGY 
To evaluate our system, we compare its output with WordNet, a 
manually created lexicon. 

5.1 WordNet 
WordNet [15] is an electronic dictionary organized as a graph. 
Each node, called a synset, represents a set of synonymous words. 
The arcs between synsets represent hyponym/hypernym 
(subclass/superclass) relationships1. Figure 2 shows a fragment of 
WordNet. The number attached to a synset s is the probability that 
a randomly selected noun refers to an instance of s or any synset 
below it. These probabilities are not included in WordNet. We use 
the frequency counts of synsets in the SemCor [9] corpus to 
estimate them. Since SemCor is a fairly small corpus (200K 

                                                                 
1 WordNet also contains other semantic relationships such as 

meronyms (part-whole relationships) and antonyms, however 
we do not use them here. 

words), the frequency counts of the synsets in the lower part of 
the WordNet hierarchy are very sparse. We smooth the 
probabilities by assuming that all siblings are equally likely given 
the parent. 

Lin [11] defined the similarity between two WordNet synsets s1 
and s2 as: 
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where s is the most specific synset that subsumes s1 and s2. For 
example, using Figure 2, if s1 = hill and s2 = shore then s = 
geological-formation and sim(hill, shore) = 0.626. 

5.2 Precision 
For each word, CBC outputs a list of clusters to which the word 
belongs. Each cluster should correspond to a sense of the word. 
The precision of the system is measured by the percentage of 
output clusters that actually correspond to a sense of the word. 

To compute the precision, we must define what it means for a 
cluster to correspond to a correct sense of a word. To determine 
this automatically, we map clusters to WordNet senses. 

Let S(w) be the set of WordNet senses of a word w (each sense is 
a synset that contains w). We define simW(s, u), the similarity 
between a synset s and a word u, as the maximum similarity 
between s and a sense of u: 

 ( )
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Let ck be the top-k members of a cluster c, where these are the k 
most similar members to the committee of c. We define the 
similarity between s and c, simC(s, c), as the average similarity 
between s and the top-k members of c: 

entity

inanimate-object

natural-object

geological-formation

natural -elevation shore

hill coast

0.395

0.167

0.0163

0.00176

0.0000836

0.0000216

0.000113

0.0000189

Figure 2. Example hierarchy of synsets in WordNet along 
with each synset’s probability. 
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Suppose a clustering algorithm assigns the word w to cluster c. 
We say that c corresponds to a correct sense of w if 
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In our experiments, we set k = 4 and varied the θ values. The 
WordNet sense of w that corresponds to c is then: 
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It is possible that multiple clusters will correspond to the same 
WordNet sense. In this case, we only count one of them as 
correct. 

We define the precision of a word w as the percentage of correct 
clusters to which it is assigned. The precision of a clustering 
algorithm is the average precision of all the words. 

5.3 Recall 
The recall (completeness) of a word w measures the ratio between 
the correct clusters to which w is assigned and the actual number 
of senses in which w was used in the corpus. Clearly, there is no 
way to know the complete list of senses of a word in any non-
trivial corpus. To address this problem, we pool the results of 
several clustering algorithms to construct the target senses. For a 
given word w, we use the union of the correct cluster of w 
discovered by the algorithms as the target list of senses for w. 

While this recall value is likely not the true recall, it does provide 
a relative ranking of the algorithms used to construct the pool of 
target senses. The overall recall is the average recall of all words. 

5.4 F-measure 
The F-measure [18] combines precision and recall aspects: 
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RPF
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where R is the recall and P is the precision. F weights low values 
of precision and recall more heavily than higher values. It is high 
when both precision and recall are high. 

6. EXPERIMENTAL RESULTS 
In this section, we describe our experimental setup and present 
evaluation results of our system. 

6.1 Setup 
We used Minipar2 [10], a broad-coverage English parser, to parse 
about 1GB (144M words) of newspaper text from the TREC 
collection (1988 AP Newswire, 1989-90 LA Times, and 1991 San 
Jose Mercury) at a speed of about 500 words/second on a PIII-750 
with 512MB memory. We collected the frequency counts of the 
                                                                 
2Available at www.cs.ualberta.ca/~lindek/minipar.htm. 

grammatical relationships (contexts) output by Minipar and used 
them to compute the pointwise mutual information values from 
Section 3. The test set is constructed by intersecting the words in 
WordNet with the nouns in the corpus whose total mutual 
information with all of its contexts exceeds a threshold (we used 
250). Since WordNet has a low coverage of proper names, we 
removed all capitalized nouns. The resulting test set consists of 
13403 words. The average number of features per word is 740.8. 

We modified the average-link, K-means, Bisecting K-means and 
Buckshot algorithms of Section 2 since these algorithms only 
assign each element to a single cluster. For each of these 
algorithms, the modification is as follows: 

Apply the algorithm as described in Section 2 
For each cluster c returned by the algorithm 
Create a centroid for c using all elements 
assigned to it 

Apply MK-means using the above centroids 

where MK-means is the K-means algorithm, using the above 
centroids as initial centroids, except that each element is assigned 
to its most similar cluster plus all other clusters with which it has 
similarity greater than σ. We then use these modified algorithms 
to discover senses. 

These clustering algorithms were not designed for sense 
discovery. Like UNICON, when assigning an element to a cluster, 
they do not remove the overlapping features from the element. 
Thus, a word is often assigned to multiple clusters that are similar. 

6.2 Word Sense Evaluation 
We ran CBC and the modified clustering algorithms described in 
the previous subsection on the data set and applied the evaluation 
methodology from Section 4.4. Table 1 shows the results. For 
Buckshot and K-means, we set the number of clusters to 1000 and 
the maximum number of iterations to 5. For the Bisecting K-
means algorithm, we applied the basic K-means algorithm twice 
(α = 2 in Section 2) with a maximum of 5 iterations per split. 
CBC returned 941 clusters and outperformed the next best 
algorithm by 7.5% on precision and 5.3% on recall. 

In Section 5.2 we stated that a cluster corresponds to a correct 
sense of a word w if its maximum simC similarity with any synset 
in S(w) exceeds a threshold θ (Eq. 7). Figure 2 shows our 

Table 1. Precision, Recall and F-measure on the data set for 
various algorithms with σ = 0.18 and θ = 0.25. 

ALGORITHM PRECISION (%) RECALL (%) F-MEASURE (%) 

CBC 60.8 50.8 55.4 

UNICON 53.3 45.5 49.2 

Buckshot 52.6 45.2 48.6 

K-means 48.0 44.2 46.0 

Bisecting K-means 33.8 31.8 32.8 

Average-link 50.0 41.0 45.0 

 



   

 

experiments using different values of θ. The higher the θ value, 
the stricter we are in defining correct senses. Naturally, the 
systems� F-measures decrease when θ increases. The relative 
ranking of the algorithms is not sensitive to the choice of θ 
values. CBC has higher F-measure for all θ thresholds. 

For all sense discovery algorithms, we assign an element to a 
cluster if their similarity exceeds a threshold σ. The value of σ 
does not affect the first sense returned by the algorithms for each 
word because each word is always assigned to its most similar 
cluster. We experimented with different values of σ and present 
the results in Figure 3. With a lower σ value, words are assigned 
to more clusters. Consequently, the precision goes down while 
recall goes up. CBC has higher F-measure for all σ thresholds. 

6.3 Manual Evaluation 
We manually evaluated a 1% random sample of the test data 
consisting of 133 words with 168 senses. Here is a sample of the 
instances that are manually judged for the words aria, capital and 
device: 
aria S1: song, ballad, folk song, tune 
capital S1: money, donation, funding, 

honorarium 
capital S2: camp, shantytown, township, slum 
device S1: camera, transmitter, sensor, 

electronic device 
device S2: equipment, test equipment, 

microcomputer, video equipment 
For each discovered sense of a word, we include its top-4 most 
similar words. The evaluation consists of assigning a tag to each 
sense as follows: 

√: The list of top-4 words describes a sense of the word 
that has not yet been seen 

+: The list of top-4 words describes a sense of the word 
that has already been seen (duplicate sense) 

×: The list of top-4 words does not describe a sense of the 
word 

The S2 sense of device is an example of a sense that is evaluated 
with the duplicate sense tag. 

Table 2 compares the agreements/disagreements between our 
manual and automatic evaluations. Our manual evaluation agreed 
with the automatic evaluation 88.1% of the time. This suggests 
that the evaluation methodology is reliable. 

Most of the disagreements (17 out of 20) were on senses that were 
incorrect according to the automatic evaluation but correct in the 
manual evaluation. The automatic evaluation misclassified these 

because sometimes WordNet misses a sense of a word and 
because of the organization of the WordNet hierarchy. Some 
words in WordNet should have high similarity (e.g. elected 
official and legislator) but they are not close to each other in the 
hierarchy. 

Our manual evaluation of the sample gave a precision of 72.0%. 
The automatic evaluation of the same sample gave 63.1% 
precision. Of the 13,403 words in the test data, CBC found 2869 
of them polysemous. 

7. DISCUSSION 
We computed the average precision for each cluster, which is the 
percentage of elements in a cluster that correctly correspond to a 
WordNet sense according to Eq.7. We inspected the low-precision 
clusters and found that they were low for three main reasons. 

First, some clusters suffer from part-of-speech confusion. Many 
of the nouns in our data set can also be used as verbs and 
adjectives. Since the feature vector of a word is constructed from 
all instances of that word (including its noun, verb and adjective 
usage), CBC outputs contain clusters of verbs and adjectives. For 
example, the following cluster contains 112 adjectives: 
weird, stupid, silly, old, bad, simple, 
normal, wrong, wild, good, romantic, tough, 
special, small, real, smart, ... 

Table 2. Comparison of manual and automatic evaluations of 
a 1% random sample of the data set. 

  MANUAL 
  √ × + 

√ 104 2 0 

× 17 41 0 

AU
TO

M
AT

IC
 

+ 0 1 3 

 

Figure 2. F-measure of several algorithms with σ = 0.18 and 
varying θ thresholds from Eq.7. 
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The noun senses of all of these words in WordNet are not similar. 
Therefore, the cluster has a very low 2.6% precision. In hindsight, 
we should have removed the verb and adjective usage features. 

Secondly, CBC outputs some clusters of proper names. If a word 
that first occurs as a common noun also has a proper-noun usage 
it will not be removed from the test data. For the same reasons as 
the part-of-speech confusion problem, CBC discovers proper 
name clusters but gets them evaluated as if they were common 
nouns (since WordNet contains few proper nouns). For example, 
the following cluster has an average precision of 10%: 
blue jay, expo, angel, mariner, cub, brave, 
pirate, twin, athletics, brewer 

Finally, some concepts discovered by CBC are completely 
missing from WordNet. For example, the following cluster of 
government departments has a low precision of 3.3% because 
WordNet does not have a synset that subsumes these words: 
public works, city planning, forestry, 
finance, tourism, agriculture, health, 
affair, social welfare, transport, labor, 
communication, environment, immigration, 
public service, transportation, urban 
planning, fishery, aviation, 
telecommunication, mental health, 
procurement, intelligence, custom, higher 
education, recreation, preservation, lottery, 
correction, scouting 

Somewhat surprisingly, all of the low-precision clusters that we 
inspected are reasonably good. At first sight, we thought the 
following cluster was bad: 
shamrock, nestle, dart, partnership, haft, 
consortium, blockbuster, whirlpool, delta, 
hallmark, rosewood, odyssey, bass, forte, 
cascade, citadel, metropolitan, hooker 

By looking at the features of the centroid of this cluster, we 
realized that it is mostly a cluster of company names. 

8. CONCLUSION 
We presented a clustering algorithm, CBC, that automatically 
discovers word senses from text. We first find well-scattered tight 
clusters called committees and use them to construct the centroids 
of the final clusters. We proceed by assigning words to their most 
similar clusters. After assigning an element to a cluster, we 
remove their overlapping features from the element. This allows 
CBC to discover the less frequent senses of a word and to avoid 
discovering duplicate senses. Each cluster that a word belongs to 
represents one of its senses. 

We also presented an evaluation methodology for automatically 
measuring the precision and recall of discovered senses. In our 
experiments, we showed that CBC outperforms several well 
known hierarchical, partitional, and hybrid clustering algorithms. 
Our manual evaluation of sample CBC outputs agreed with 88.1% 
of the decisions made by the automatic evaluation. 
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