

Discovering Word Senses from Text
Patrick Pantel and Dekang Lin

University of Alberta
Department of Computing Science

Edmonton, Alberta T6H 2E1 Canada

{ppantel, lindek}@cs.ualberta.ca

ABSTRACT
Inventories of manually compiled dictionaries usually serve as a
source for word senses. However, they often include many rare
senses while missing corpus/domain-specific senses. We present a
clustering algorithm called CBC (Clustering By Committee) that
automatically discovers word senses from text. It initially
discovers a set of tight clusters called committees that are well
scattered in the similarity space. The centroid of the members of a
committee is used as the feature vector of the cluster. We proceed
by assigning words to their most similar clusters. After assigning
an element to a cluster, we remove their overlapping features
from the element. This allows CBC to discover the less frequent
senses of a word and to avoid discovering duplicate senses. Each
cluster that a word belongs to represents one of its senses. We
also present an evaluation methodology for automatically
measuring the precision and recall of discovered senses.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval---Clustering.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Word sense discovery, clustering, evaluation, machine learning.

1. INTRODUCTION
Using word senses versus word forms is useful in many
applications such as information retrieval [20], machine
translation [5] and question-answering [16]. In previous
approaches, word senses are usually defined using a manually
constructed lexicon. There are several disadvantages associated
with these word senses. First, manually created lexicons often
contain rare senses. For example, WordNet 1.5 [15] (hereon
referred to as WordNet) included a sense of computer that means
�the person who computes�. Using WordNet to expand queries to
an information retrieval system, the expansion of computer

includes words like estimator and reckoner. The second problem
with these lexicons is that they miss many domain specific senses.
For example, WordNet misses the user-interface-object sense of
the word dialog (as often used in software manuals).

The meaning of an unknown word can often be inferred from its
context. Consider the following sentences:
A bottle of tezgüno is on the table.
Everyone likes tezgüno.
Tezgüno makes you drunk.
We make tezgüno out of corn.

The contexts in which the word tezgüno is used suggest that
tezgüno may be a kind of alcoholic beverage. This is because
other alcoholic beverages tend to occur in the same contexts as
tezgüno. The intuition is that words that occur in the same
contexts tend to be similar. This is known as the Distributional
Hypothesis [3]. There have been many approaches to compute the
similarity between words based on their distribution in a corpus
[4][8][12]. The output of these programs is a ranked list of similar
words to each word. For example, [12] outputs the following
similar words for wine and suit:
wine: beer, white wine, red wine, Chardonnay,

champagne, fruit, food, coffee, juice,
Cabernet, cognac, vinegar, Pinot noir,
milk, vodka,…

suit: lawsuit, jacket, shirt, pant, dress,
case, sweater, coat, trouser, claim,
business suit, blouse, skirt,
litigation, …

The similar words of wine represent the meaning of wine.
However, the similar words of suit represent a mixture of its
clothing and litigation senses. Such lists of similar words do not
distinguish between the multiple senses of polysemous words.

The algorithm we present in this paper automatically discovers
word senses by clustering words according to their distributional
similarity. Each cluster that a word belongs to corresponds to a
sense of the word. Consider the following sample outputs from
our algorithm:

(suit
Nq34 0.39 (blouse, slack, legging,

sweater)
Nq137 0.20 (lawsuit, allegation, case,

charge)
)
(plant
Nq215 0.41 (plant, factory, facility,

refinery)
Nq235 0.20 (shrub, ground cover,

perennial, bulb)
)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD’02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007�$5.00.

(heart
Nq72 0.27 (kidney, bone marrow, marrow,

liver)
Nq866 0.17 (psyche, consciousness, soul,

mind)
)

Each entry shows the clusters to which the headword belongs.
Nq34, Nq137, � are automatically generated names for the
clusters. The number after each cluster name is the similarity
between the cluster and the headword (i.e. suit, plant and heart).
The lists of words are the top-4 most similar members to the
cluster centroid. Each cluster corresponds to a sense of the
headword. For example, Nq34 corresponds to the clothing sense
of suit and Nq137 corresponds to the litigation sense of suit.

In this paper, we present a clustering algorithm, CBC (Clustering
By Committee), in which the centroid of a cluster is constructed
by averaging the feature vectors of a subset of the cluster
members. The subset is viewed as a committee that determines
which other elements belong to the cluster. By carefully choosing
committee members, the features of the centroid tend to be the
more typical features of the target class.

We also propose an automatic evaluation methodology for senses
discovered by clustering algorithms. Using the senses in
WordNet, we measure the precision of a system�s discovered
senses and the recall of the senses it should discover.

2. RELATED WORK
Clustering algorithms are generally categorized as hierarchical
and partitional. In hierarchical agglomerative algorithms, clusters
are constructed by iteratively merging the most similar clusters.
These algorithms differ in how they compute cluster similarity. In
single-link clustering, the similarity between two clusters is the
similarity between their most similar members while complete-
link clustering uses the similarity between their least similar
members. Average-link clustering computes this similarity as the
average similarity between all pairs of elements across clusters.
The complexity of these algorithms is O(n2logn), where n is the
number of elements to be clustered [6].

Chameleon is a hierarchical algorithm that employs dynamic
modeling to improve clustering quality [7]. When merging two
clusters, one might consider the sum of the similarities between
pairs of elements across the clusters (e.g. average-link clustering).
A drawback of this approach is that the existence of a single pair
of very similar elements might unduly cause the merger of two
clusters. An alternative considers the number of pairs of elements
whose similarity exceeds a certain threshold [3]. However, this
may cause undesirable mergers when there are a large number of
pairs whose similarities barely exceed the threshold. Chameleon
clustering combines the two approaches.

K-means clustering is often used on large data sets since its
complexity is linear in n, the number of elements to be clustered.
K-means is a family of partitional clustering algorithms that
iteratively assigns each element to one of K clusters according to
the centroid closest to it and recomputes the centroid of each
cluster as the average of the cluster�s elements. However, K-
means has complexity O(K×T×n) and is efficient for many
clustering tasks. Because the initial centroids are randomly
selected, the resulting clusters vary in quality. Some sets of initial
centroids lead to poor convergence rates or poor cluster quality.

Bisecting K-means [19], a variation of K-means, begins with a set
containing one large cluster consisting of every element and
iteratively picks the largest cluster in the set, splits it into two
clusters and replaces it by the split clusters. Splitting a cluster
consists of applying the basic K-means algorithm α times with
K=2 and keeping the split that has the highest average element-
centroid similarity.

Hybrid clustering algorithms combine hierarchical and partitional
algorithms in an attempt to have the high quality of hierarchical
algorithms with the efficiency of partitional algorithms. Buckshot
[1] addresses the problem of randomly selecting initial centroids
in K-means by combining it with average-link clustering. Cutting
et al. claim its clusters are comparable in quality to hierarchical
algorithms but with a lower complexity. Buckshot first applies
average-link to a random sample of n elements to generate K
clusters. It then uses the centroids of the clusters as the initial K
centroids of K-means clustering. The sample size counterbalances
the quadratic running time of average-link to make Buckshot
efficient: O(K×T×n + nlogn). The parameters K and T are usually
considered to be small numbers.

CBC is a descendent of UNICON [13], which also uses small and
tight clusters to construct initial centroids. We compare them in
Section 4.4 after presenting the CBC algorithm.

3. WORD SIMILARITY
Following [12], we represent each word by a feature vector. Each
feature corresponds to a context in which the word occurs. For
example, �sip __� is a verb-object context. If the word wine
occurred in this context, the context is a feature of wine. The
value of the feature is the pointwise mutual information [14]
between the feature and the word. Let c be a context and Fc(w) be
the frequency count of a word w occurring in context c. The
pointwise mutual information, miw,c, between c and w is defined
as:

()

() ()

N

jF

N

wF
N

wF

cw
j

c
i

i

c

mi ∑
×

∑
=, (1)

where N = ()∑ ∑
i j

jiF is the total frequency counts of all words

and their contexts. A well-known problem with mutual
information is that it is biased towards infrequent words/features.
We therefore multiplied miw,c with a discounting factor:

 ()
()

() ()

() () 1
1

+

×
+

∑ ∑

∑ ∑

i j
ci

i j
ci

c

c

jF,wFmin

jF,wFmin

wF
wF

 (2)

We compute the similarity between two words wi and wj using the
cosine coefficient [17] of their mutual information vectors:

 ()
∑∑

∑
×

×
=

c
cw

c
cw

c
cwcw

ji

ji

ji

mimi

mimi
w,wsim

22

 (3)

4. ALGORITHM
CBC consists of three phases. In Phase I, we compute each
element�s top-k similar elements. In our experiments, we used k =
10. In Phase II, we construct a collection of tight clusters, where
the elements of each cluster form a committee. The algorithm
tries to form as many committees as possible on the condition that
each newly formed committee is not very similar to any existing
committee. If the condition is violated, the committee is simply
discarded. In the final phase of the algorithm, each element e is
assigned to its most similar clusters.

4.1 Phase I: Find top-similar elements
Computing the complete similarity matrix between pairs of
elements is obviously quadratic. However, one can dramatically
reduce the running time by taking advantage of the fact that the
feature vector is sparse. By indexing the features, one can retrieve
the set of elements that have a given feature. To compute the top
similar elements of an element e, we first sort the features
according to their pointwise mutual information values and then
only consider a subset of the features with highest mutual
information. Finally, we compute the pairwise similarity between
e and the elements that share a feature from this subset. Since
high mutual information features tend not to occur in many
elements, we only need to compute a fraction of the possible
pairwise combinations. Using this heuristic, similar words that
share only low mutual information features will be missed by our
algorithm. However, in our experiments, this had no visible
impact on cluster quality.

4.2 Phase II: Find committees
The second phase of the clustering algorithm recursively finds
tight clusters scattered in the similarity space. In each recursive
step, the algorithm finds a set of tight clusters, called committees,
and identifies residue elements that are not covered by any
committee. We say a committee covers an element if the
element�s similarity to the centroid of the committee exceeds
some high similarity threshold. The algorithm then recursively
attempts to find more committees among the residue elements.
The output of the algorithm is the union of all committees found
in each recursive step. The details of Phase II are presented in
Figure 1.

In Step 1, the score reflects a preference for bigger and tighter
clusters. Step 2 gives preference to higher quality clusters in Step
3, where a cluster is only kept if its similarity to all previously
kept clusters is below a fixed threshold. In our experiments, we
set θ1 = 0.35. Step 4 terminates the recursion if no committee is
found in the previous step. The residue elements are identified in
Step 5 and if no residues are found, the algorithm terminates;
otherwise, we recursively apply the algorithm to the residue
elements.

Each committee that is discovered in this phase defines one of the
final output clusters of the algorithm.

4.3 Phase III: Assign elements to clusters
In Phase III, each element e is assigned to its most similar clusters
in the following way:

let C be a list of clusters initially empty
let S be the top-200 similar clusters to e

while S is not empty {
let c∈S be the most similar cluster to e
if the similarity(e, c) < σ
exit the loop

if c is not similar to any cluster in C {
assign e to c
remove from e its features that overlap
with the features of c;

}
remove c from S

}

When computing the similarity between a cluster and an element
(or another cluster) we use the centroid of committee members as
the representation for the cluster. This phase resembles K-means
in that elements are assigned to their closest centroids. Unlike K-
means, the number of clusters is not fixed and the centroids do not
change (i.e. when an element is added to a cluster, it is not added
to the committee of the cluster).

The key to the algorithm for discovering senses is that once an
element e is assigned to a cluster c, the intersecting features

Input: A list of elements E to be clustered, a similarity
database S from Phase I, thresholds θ1 and θ2.

Step 1: For each element e ∈ E
 Cluster the top similar elements of e from S using

average-link clustering.
 For each cluster discovered c compute the following

score: |c| × avgsim(c), where |c| is the number of
elements in c and avgsim(c) is the average
pairwise similarity between elements in c.

 Store the highest-scoring cluster in a list L.
Step 2: Sort the clusters in L in descending order of their

scores.

Step 3: Let C be a list of committees, initially empty.
 For each cluster c ∈ L in sorted order
 Compute the centroid of c by averaging the

frequency vectors of its elements and computing
the mutual information vector of the centroid in
the same way as we did for individual elements.

 If c�s similarity to the centroid of each committee
previously added to C is below a threshold θ1, add
c to C.

Step 4: If C is empty, we are done and return C.

Step 5: For each element e ∈ E
 If e�s similarity to every committee in C is below

threshold θ2, add e to a list of residues R.

Step 6: If R is empty, we are done and return C.
 Otherwise, return the union of C and the output of a

recursive call to Phase II using the same input
except replacing E with R.

Output: a list of committees.

Figure 1. Phase II of CBC.

between e and c are removed from e. This allows CBC to discover
the less frequent senses of a word and to avoid discovering
duplicate senses.

4.4 Comparison with UNICON
UNICON [13] also constructs cluster centroids using a small set
of similar elements, like the committees in CBC.

One of the main differences between UNICON and CBC is that
UNICON only guarantees that the committees do not have
overlapping members. However, the centroids of two committees
may still be quite similar. UNICON deals with this problem by
merging such clusters. In contrast, Step 2 in Phase II of CBC only
outputs a committee if its centroid is not similar to any previously
output committee.

Another main difference between UNICON and CBC is in Phase
III of CBC. UNICON has difficulty discovering senses of a word
when this word has a dominating sense. For example, in the
newspaper corpus that we used in our experiments, the factory
sense of plant is used much more frequently than its life sense.
Consequently, the majority of the features of the word plant are
related to its factory sense. This is evidenced in the following top-
30 most similar words of plant.
facility, factory, reactor, refinery, power
plant, site, manufacturing plant, tree,
building, complex, landfill, dump, project,
mill, airport, station, farm, operation,
warehouse, company, home, center, lab, store,
industry, park, house, business, incinerator

All of the above, except the word tree, are related to the factory
sense. Even though UNICON generated a cluster
ground cover, perennial, shrub, bulb, annual,
wildflower, shrubbery, fern, grass, ...

the similarity between plant and this cluster is very low.

On the other hand, CBC removes the factory related features from
the feature vector of plant after it is assigned to the factory
cluster. As a result, the similarity between the {ground cover,
perennial, …} cluster and the revised feature vector of plant
becomes much higher.

5. EVALUATION METHODOLOGY
To evaluate our system, we compare its output with WordNet, a
manually created lexicon.

5.1 WordNet
WordNet [15] is an electronic dictionary organized as a graph.
Each node, called a synset, represents a set of synonymous words.
The arcs between synsets represent hyponym/hypernym
(subclass/superclass) relationships1. Figure 2 shows a fragment of
WordNet. The number attached to a synset s is the probability that
a randomly selected noun refers to an instance of s or any synset
below it. These probabilities are not included in WordNet. We use
the frequency counts of synsets in the SemCor [9] corpus to
estimate them. Since SemCor is a fairly small corpus (200K

1 WordNet also contains other semantic relationships such as

meronyms (part-whole relationships) and antonyms, however
we do not use them here.

words), the frequency counts of the synsets in the lower part of
the WordNet hierarchy are very sparse. We smooth the
probabilities by assuming that all siblings are equally likely given
the parent.

Lin [11] defined the similarity between two WordNet synsets s1
and s2 as:

 () ()
() ()21

21
2

sPlogsPlog
sPlogs,ssim

+
×

= (4)

where s is the most specific synset that subsumes s1 and s2. For
example, using Figure 2, if s1 = hill and s2 = shore then s =
geological-formation and sim(hill, shore) = 0.626.

5.2 Precision
For each word, CBC outputs a list of clusters to which the word
belongs. Each cluster should correspond to a sense of the word.
The precision of the system is measured by the percentage of
output clusters that actually correspond to a sense of the word.

To compute the precision, we must define what it means for a
cluster to correspond to a correct sense of a word. To determine
this automatically, we map clusters to WordNet senses.

Let S(w) be the set of WordNet senses of a word w (each sense is
a synset that contains w). We define simW(s, u), the similarity
between a synset s and a word u, as the maximum similarity
between s and a sense of u:

 ()
()

()t,ssimmaxu,ssimW
uSt∈

= (5)

Let ck be the top-k members of a cluster c, where these are the k
most similar members to the committee of c. We define the
similarity between s and c, simC(s, c), as the average similarity
between s and the top-k members of c:

entity

inanimate-object

natural-object

geological-formation

natural -elevation shore

hill coast

0.395

0.167

0.0163

0.00176

0.0000836

0.0000216

0.000113

0.0000189

Figure 2. Example hierarchy of synsets in WordNet along
with each synset’s probability.

 ()
()

k

u,ssimW
c,ssimC kcu

∑
∈= (6)

Suppose a clustering algorithm assigns the word w to cluster c.
We say that c corresponds to a correct sense of w if

()

() θ≥
∈

c,ssimCmax
wSs

 (7)

In our experiments, we set k = 4 and varied the θ values. The
WordNet sense of w that corresponds to c is then:

()

()c,ssimCmaxarg
wSs∈

 (8)

It is possible that multiple clusters will correspond to the same
WordNet sense. In this case, we only count one of them as
correct.

We define the precision of a word w as the percentage of correct
clusters to which it is assigned. The precision of a clustering
algorithm is the average precision of all the words.

5.3 Recall
The recall (completeness) of a word w measures the ratio between
the correct clusters to which w is assigned and the actual number
of senses in which w was used in the corpus. Clearly, there is no
way to know the complete list of senses of a word in any non-
trivial corpus. To address this problem, we pool the results of
several clustering algorithms to construct the target senses. For a
given word w, we use the union of the correct cluster of w
discovered by the algorithms as the target list of senses for w.

While this recall value is likely not the true recall, it does provide
a relative ranking of the algorithms used to construct the pool of
target senses. The overall recall is the average recall of all words.

5.4 F-measure
The F-measure [18] combines precision and recall aspects:

PR

RPF
+

=
2 (9)

where R is the recall and P is the precision. F weights low values
of precision and recall more heavily than higher values. It is high
when both precision and recall are high.

6. EXPERIMENTAL RESULTS
In this section, we describe our experimental setup and present
evaluation results of our system.

6.1 Setup
We used Minipar2 [10], a broad-coverage English parser, to parse
about 1GB (144M words) of newspaper text from the TREC
collection (1988 AP Newswire, 1989-90 LA Times, and 1991 San
Jose Mercury) at a speed of about 500 words/second on a PIII-750
with 512MB memory. We collected the frequency counts of the

2Available at www.cs.ualberta.ca/~lindek/minipar.htm.

grammatical relationships (contexts) output by Minipar and used
them to compute the pointwise mutual information values from
Section 3. The test set is constructed by intersecting the words in
WordNet with the nouns in the corpus whose total mutual
information with all of its contexts exceeds a threshold (we used
250). Since WordNet has a low coverage of proper names, we
removed all capitalized nouns. The resulting test set consists of
13403 words. The average number of features per word is 740.8.

We modified the average-link, K-means, Bisecting K-means and
Buckshot algorithms of Section 2 since these algorithms only
assign each element to a single cluster. For each of these
algorithms, the modification is as follows:

Apply the algorithm as described in Section 2
For each cluster c returned by the algorithm
Create a centroid for c using all elements
assigned to it

Apply MK-means using the above centroids

where MK-means is the K-means algorithm, using the above
centroids as initial centroids, except that each element is assigned
to its most similar cluster plus all other clusters with which it has
similarity greater than σ. We then use these modified algorithms
to discover senses.

These clustering algorithms were not designed for sense
discovery. Like UNICON, when assigning an element to a cluster,
they do not remove the overlapping features from the element.
Thus, a word is often assigned to multiple clusters that are similar.

6.2 Word Sense Evaluation
We ran CBC and the modified clustering algorithms described in
the previous subsection on the data set and applied the evaluation
methodology from Section 4.4. Table 1 shows the results. For
Buckshot and K-means, we set the number of clusters to 1000 and
the maximum number of iterations to 5. For the Bisecting K-
means algorithm, we applied the basic K-means algorithm twice
(α = 2 in Section 2) with a maximum of 5 iterations per split.
CBC returned 941 clusters and outperformed the next best
algorithm by 7.5% on precision and 5.3% on recall.

In Section 5.2 we stated that a cluster corresponds to a correct
sense of a word w if its maximum simC similarity with any synset
in S(w) exceeds a threshold θ (Eq. 7). Figure 2 shows our

Table 1. Precision, Recall and F-measure on the data set for
various algorithms with σ = 0.18 and θ = 0.25.

ALGORITHM PRECISION (%) RECALL (%) F-MEASURE (%)

CBC 60.8 50.8 55.4

UNICON 53.3 45.5 49.2

Buckshot 52.6 45.2 48.6

K-means 48.0 44.2 46.0

Bisecting K-means 33.8 31.8 32.8

Average-link 50.0 41.0 45.0

experiments using different values of θ. The higher the θ value,
the stricter we are in defining correct senses. Naturally, the
systems� F-measures decrease when θ increases. The relative
ranking of the algorithms is not sensitive to the choice of θ
values. CBC has higher F-measure for all θ thresholds.

For all sense discovery algorithms, we assign an element to a
cluster if their similarity exceeds a threshold σ. The value of σ
does not affect the first sense returned by the algorithms for each
word because each word is always assigned to its most similar
cluster. We experimented with different values of σ and present
the results in Figure 3. With a lower σ value, words are assigned
to more clusters. Consequently, the precision goes down while
recall goes up. CBC has higher F-measure for all σ thresholds.

6.3 Manual Evaluation
We manually evaluated a 1% random sample of the test data
consisting of 133 words with 168 senses. Here is a sample of the
instances that are manually judged for the words aria, capital and
device:
aria S1: song, ballad, folk song, tune
capital S1: money, donation, funding,

honorarium
capital S2: camp, shantytown, township, slum
device S1: camera, transmitter, sensor,

electronic device
device S2: equipment, test equipment,

microcomputer, video equipment
For each discovered sense of a word, we include its top-4 most
similar words. The evaluation consists of assigning a tag to each
sense as follows:

√: The list of top-4 words describes a sense of the word
that has not yet been seen

+: The list of top-4 words describes a sense of the word
that has already been seen (duplicate sense)

×: The list of top-4 words does not describe a sense of the
word

The S2 sense of device is an example of a sense that is evaluated
with the duplicate sense tag.

Table 2 compares the agreements/disagreements between our
manual and automatic evaluations. Our manual evaluation agreed
with the automatic evaluation 88.1% of the time. This suggests
that the evaluation methodology is reliable.

Most of the disagreements (17 out of 20) were on senses that were
incorrect according to the automatic evaluation but correct in the
manual evaluation. The automatic evaluation misclassified these

because sometimes WordNet misses a sense of a word and
because of the organization of the WordNet hierarchy. Some
words in WordNet should have high similarity (e.g. elected
official and legislator) but they are not close to each other in the
hierarchy.

Our manual evaluation of the sample gave a precision of 72.0%.
The automatic evaluation of the same sample gave 63.1%
precision. Of the 13,403 words in the test data, CBC found 2869
of them polysemous.

7. DISCUSSION
We computed the average precision for each cluster, which is the
percentage of elements in a cluster that correctly correspond to a
WordNet sense according to Eq.7. We inspected the low-precision
clusters and found that they were low for three main reasons.

First, some clusters suffer from part-of-speech confusion. Many
of the nouns in our data set can also be used as verbs and
adjectives. Since the feature vector of a word is constructed from
all instances of that word (including its noun, verb and adjective
usage), CBC outputs contain clusters of verbs and adjectives. For
example, the following cluster contains 112 adjectives:
weird, stupid, silly, old, bad, simple,
normal, wrong, wild, good, romantic, tough,
special, small, real, smart, ...

Table 2. Comparison of manual and automatic evaluations of
a 1% random sample of the data set.

 MANUAL
 √ × +

√ 104 2 0

× 17 41 0

AU
TO

M
AT

IC

+ 0 1 3

Figure 2. F-measure of several algorithms with σ = 0.18 and
varying θ thresholds from Eq.7.

16%

32%

48%

64%

80%

0.1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4

θ

F
-m

ea
su

re

CBC UNICO N Buc ks ho t

K -means BK-means A v e rage -L ink

Figure 3. F-measure of several algorithms with θ = 0.25 and
varying σ thresholds.

20%

30%

40%

50%

60%

0.1 0 .14 0 .18 0.22 0.26

σ

F
-m

ea
su

re

CBC UNICON Buc ks hot

K-means BK-means A v erage-L ink

The noun senses of all of these words in WordNet are not similar.
Therefore, the cluster has a very low 2.6% precision. In hindsight,
we should have removed the verb and adjective usage features.

Secondly, CBC outputs some clusters of proper names. If a word
that first occurs as a common noun also has a proper-noun usage
it will not be removed from the test data. For the same reasons as
the part-of-speech confusion problem, CBC discovers proper
name clusters but gets them evaluated as if they were common
nouns (since WordNet contains few proper nouns). For example,
the following cluster has an average precision of 10%:
blue jay, expo, angel, mariner, cub, brave,
pirate, twin, athletics, brewer

Finally, some concepts discovered by CBC are completely
missing from WordNet. For example, the following cluster of
government departments has a low precision of 3.3% because
WordNet does not have a synset that subsumes these words:
public works, city planning, forestry,
finance, tourism, agriculture, health,
affair, social welfare, transport, labor,
communication, environment, immigration,
public service, transportation, urban
planning, fishery, aviation,
telecommunication, mental health,
procurement, intelligence, custom, higher
education, recreation, preservation, lottery,
correction, scouting

Somewhat surprisingly, all of the low-precision clusters that we
inspected are reasonably good. At first sight, we thought the
following cluster was bad:
shamrock, nestle, dart, partnership, haft,
consortium, blockbuster, whirlpool, delta,
hallmark, rosewood, odyssey, bass, forte,
cascade, citadel, metropolitan, hooker

By looking at the features of the centroid of this cluster, we
realized that it is mostly a cluster of company names.

8. CONCLUSION
We presented a clustering algorithm, CBC, that automatically
discovers word senses from text. We first find well-scattered tight
clusters called committees and use them to construct the centroids
of the final clusters. We proceed by assigning words to their most
similar clusters. After assigning an element to a cluster, we
remove their overlapping features from the element. This allows
CBC to discover the less frequent senses of a word and to avoid
discovering duplicate senses. Each cluster that a word belongs to
represents one of its senses.

We also presented an evaluation methodology for automatically
measuring the precision and recall of discovered senses. In our
experiments, we showed that CBC outperforms several well
known hierarchical, partitional, and hybrid clustering algorithms.
Our manual evaluation of sample CBC outputs agreed with 88.1%
of the decisions made by the automatic evaluation.

9. ACKNOWLEDGEMENTS
The authors wish to thank the reviewers for their helpful
comments. This research was partly supported by Natural
Sciences and Engineering Research Council of Canada grant
OGP121338 and scholarship PGSB207797.

10. REFERENCES
[1] Cutting, D. R.; Karger, D.; Pedersen, J.; and Tukey, J. W. 1992.

Scatter/Gather: A cluster-based approach to browsing large
document collections. In Proceedings of SIGIR-92. pp. 318�329.
Copenhagen, Denmark.

[2] Guha, S.; Rastogi, R.; and Kyuseok, S. 1999. ROCK: A robust
clustering algorithm for categorical attributes. In Proceedings of
ICDE’99. pp. 512�521. Sydney, Australia.

[3] Harris, Z. 1985. Distributional structure. In: Katz, J. J. (ed.) The
Philosophy of Linguistics. New York: Oxford University Press. pp.
26�47.

[4] Hindle, D. 1990. Noun classification from predicate-argument
structures. In Proceedings of ACL-90. pp. 268�275. Pittsburgh, PA.

[5] Hutchins, J. and Sommers, H. 1992. Introduction to Machine
Translation. Academic Press.

[6] Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data clustering: A
review. ACM Computing Surveys 31(3):264�323.

[7] Karypis, G.; Han, E.-H.; and Kumar, V. 1999. Chameleon: A
hierarchical clustering algorithm using dynamic modeling. IEEE
Computer: Special Issue on Data Analysis and Mining 32(8):68�75.

[8] Landauer, T. K., and Dumais, S. T. 1997. A solution to Plato's
problem: The Latent Semantic Analysis theory of the acquisition,
induction, and representation of knowledge. Psychological Review
104:211�240.

[9] Landes, S.; Leacock, C.; and Tengi, R. I. 1998. Building semantic
concordances. In WordNet: An Electronic Lexical Database, edited
by C. Fellbaum. pp. 199�216. MIT Press.

[10] Lin, D. 1994. Principar - an efficient, broad-coverage, principle-
based parser. Proceedings of COLING-94. pp. 42�48. Kyoto, Japan.

[11] Lin, D. 1997. Using syntactic dependency as local context to resolve
word sense ambiguity. In Proceedings of ACL-97. pp. 64�71.
Madrid, Spain.

[12] Lin, D. 1998. Automatic retrieval and clustering of similar words.
Proceedings of COLING/ACL-98. pp. 768�774. Montreal, Canada.

[13] Lin, D. and Pantel, P. 2001. Induction of semantic classes from
natural language text. In Proceedings of SIGKDD-01. pp. 317�322.
San Francisco, CA.

[14] Manning, C. D. and Schütze, H. 1999. Foundations of Statistical
Natural Language Processing. MIT Press.

[15] Miller, G. 1990. WordNet: An online lexical database. International
Journal of Lexicography, 1990.

[16] Pasca, M. and Harabagiu, S. 2001. The informative role of WordNet
in Open-Domain Question Answering. In Proceedings of NAACL-01
Workshop on WordNet and Other Lexical Resources. pp. 138�143.
Pittsburgh, PA.

[17] Salton, G. and McGill, M. J. 1983. Introduction to Modern
Information Retrieval. McGraw Hill.

[18] Shaw Jr, W. M.; Burgin, R.; and Howell, P. 1997. Performance
standards and evaluations in IR test collections: Cluster-based
retrieval methods. Information Processing and Management 33:1�
14, 1997.

[19] Steinbach, M.; Karypis, G.; and Kumar, V. 2000. A comparison of
document clustering techniques. Technical Report #00-034.
Department of Computer Science and Engineering, University of
Minnesota.

[20] Voorhees, E. M. 1998. Using WordNet for text retrieval. In
WordNet: An Electronic Lexical Database, edited by C. Fellbaum.
pp. 285�303. MIT Press.

