

Discovery of Inference Rules for Question Answering

DEKANG LIN AND PATRICK PANTEL
Department of Computing Science

University of Alberta
Edmonton, Alberta T6G 2H8 Canada

{lindek, ppantel}@cs.ualberta.ca

Abstract
One of the main challenges in question-answering is the potential mismatch between the
expressions in questions and the expressions in texts. While humans appear to use infer-
ence rules such as �X writes Y� implies �X is the author of Y� in answering questions,
such rules are generally unavailable to question-answering systems due to the inherent
difficulty in constructing them. In this paper, we present an unsupervised algorithm for
discovering inference rules from text. Our algorithm is based on an extended version of
Harris� Distributional Hypothesis, which states that words that occurred in the same con-
texts tend to be similar. Instead of using this hypothesis on words, we apply it to paths in
the dependency trees of a parsed corpus. Essentially, if two paths tend to link the same set
of words, we hypothesize that their meanings are similar. We use examples to show that
our system discovers many inference rules easily missed by humans.

1 Introduction

One of the main challenges in question-answering and information retrieval is the
potential mismatch between the expressions in questions and the expressions in
texts. Suppose a question is phrased as �Who is the author of the 'Star Spangled
Banner'?� Unless the system recognizes the relationship between �X wrote Y�
and �X is the author of Y�, it would not necessarily rank the sentence

... Francis Scott Key wrote the �Star Spangled Banner� in 1814.
higher than the sentence

�comedian-actress Roseanne Barr sang her famous shrieking ren-
dition of the �Star Spangled Banner� before a San Diego Padres-
Cincinnati Reds game.

We call �X wrote Y ≈ X is the author of Y” an inference rule. In previous work,
such relationships have been referred to as paraphrases or variants (Sparck Jones
and Tait, 1984; Fabre and Jacquemin, 2000). In this paper, we use the term infer-
ence rule because we also want to include relationships that are not exactly para-
phrases, but are nonetheless related and are potentially useful to question-

answering systems. For example, �X caused Y ≈ Y is blamed on X� is an infer-
ence rule even though the two phrases do not mean exactly the same thing.

Inference rules are extremely important in many fields such as natural lan-
guage processing, information retrieval, and Artificial Intelligence in general. In
the LASSO/FALCON systems (Harabagiu et al., 2000), the most successful QA
systems in TREC-8 and TREC-9, a theorem prover is used to justify the answers.
FALCON scored 19% higher with the answer justification process than without
it.

Traditionally, knowledge bases containing such inference rules are created
manually. This knowledge engineering task is extremely laborious. More impor-
tantly, building such a knowledge base is inherently difficult since humans are
not good at generating a complete list of rules. For example, while it is quite
trivial to come up with the rule �X wrote Y ≈ X is the author of Y�, it seems hard
to dream up a rule like �X manufactures Y ≈ X’s Y factory�, which can be used to
infer that �Chrétien visited Peugot’s newly renovated car factory in the
afternoon� contains an answer to the query �What does Peugot manufacture?�

Most previous efforts on knowledge engineering have focused on creating
tools for helping knowledge engineers transfer their knowledge to machines
(Hahn and Schnattinger, 1998). Our goal is to automatically discover such rules.

In this paper, we present an unsupervised algorithm, DIRT, for Discovering
Inference Rules from Text. Our algorithm is a generalization of previous algo-
rithms for finding similar words (Hindle, 1990; Pereira, 1993; Lin, 1998). Algo-
rithms for finding similar words assume the Distributional Hypothesis, which
states that words that occurred in the same contexts tend to have similar mean-
ings (Harris, 1985). Instead of applying the Distributional Hypothesis to words,
we apply it to paths in dependency trees. Essentially, if two paths tend to link the
same sets of words, we hypothesize that their meanings are similar. Since a path
represents a binary relationship, we generate an inference rule for each pair of
similar paths.

The remainder of this paper is organized as follows. In the next section, we re-
view previous work. In Section 3, we define paths in dependency trees and de-
scribe their extraction from a parsed corpus. Section 4 presents the DIRT system.
A comparison of our system�s output with manually generated paraphrase ex-
pressions is shown in Section 5. Finally, we conclude with a discussion of future
work.

2 Previous Work

Most previous work on variant recognition and paraphrase has been done in the
fields of natural language generation, text summarization, and information re-
trieval.

The generation community focused mainly on rule-based text transformations
in order to meet external constraints such as length and readability (Meteer and
Shaked, 1988; Iordanskaja et al., 1991; Robin, 1994; Dras, 1997). Dras (1999)

described syntactic paraphrases using a meta-grammar with a synchronous Tree
Adjoining Grammar (TAG) formalism.

In multi-document summarization, paraphrasing is important to avoid redun-
dant statements in a summary. Given a collection of similar sentences (a theme)
with different wordings, it is difficult to identify similar phrases that report the
same fact. Barzilay et al. (1999) analyzed 200 two-sentence themes from a cor-
pus and extracted seven lexico-syntactic paraphrasing rules. These rules covered
82% of syntactic and lexical paraphrases, which cover 70% of all variants. The
rules are subsequently used to identify common statements in a theme by com-
paring the predicate-argument structure of the sentences within the theme.

In information retrieval, it is common to identify phrasal terms from queries
and generate their variants for query expansion. It has been shown that such
query expansion does promote effective retrieval (Arampatzis et al., 1998; Anick
and Tipirneni, 1999). Morphological variant query expansion was treated by
Sparck Jones and Tait (1984) using a semantic interpreter and by the Fastr sys-
tem (Jacquemin et al., 1997). Also, Jacquemin (1999) proposed a rule-based sys-
tem for the recognition of morpho-syntactic variants using morphological and
light syntactic features (e.g. part-of speech and number agreement). Motivated by
the fact that morpho-syntactic features inadequately separated correct and incor-
rect variants, Fabre and Jacquemin (2000) later extended this model using lexical
semantics for obtaining noun-to-verb variants. The minor modifications to the
model increased the recognition precision by 30% and reduced recognition recall
by 10%.

In (Richardson, 1997), Richardson extracted semantic relationships (e.g., hy-
pernym, location, material and purpose) from dictionary definitions using a
parser and constructed a semantic network. He then described an algorithm that
uses paths in the semantic network to compute the similarity between words. In a
sense, our algorithm is a dual of Richardson�s approach. While Richardson used
paths as features to compute the similarity between words, we use words as fea-
tures to compute the similarity of paths.

Many text mining algorithms aim at finding association rules between terms
(Lin et al., 1998). In contrast, the output of our algorithm is a set of associations
between relations. Term associations usually require human interpretation; how-
ever, some of them are considered to be uninterpretable even by humans (Feld-
man et. al., 1998).

3 Extraction of Paths from Dependency Trees

The inference rules discovered by DIRT are between paths in dependency trees.
In this section, we first briefly describe the parser used to generate the depend-
ency trees. Then, we describe an algorithm for extracting paths from the trees.

3.1 Minipar

Minipar1 is a principle-based English parser (Berwick, 1991). Like Principar
(Lin, 1993), Minipar represents its grammar as a network where nodes represent
grammatical categories and links represent types of syntactic (dependency) rela-
tionships. The grammar network consists of 35 nodes and 59 links. Additional
nodes and links are created dynamically to represent subcategories of verbs.
Minipar employs a message passing algorithm that essentially implements dis-
tributed chart parsing. Instead of maintaining a single chart, each node in the
grammar network maintains a chart containing partially built structures belong-
ing to the grammatical category represented by the node. The grammatical prin-
ciples are implemented as constraints associated with the nodes and links.

The lexicon in Minipar is derived from syntactic features (parts of speech and
subcategorization frames) in WordNet (Miller, 1990). With additional proper
names, the lexicon contains about 130,000 entries (in base forms). The lexicon
entry of a word lists all possible parts of speech of the word and its subcategori-
zation frames (if any). The lexical ambiguities are handled by the parser instead
of a tagger.

Minipar works with a constituency grammar internally, however the output of
Minipar is a dependency tree. The conversion is straightforward because all the
constituents in the constituency grammar have a head. Figure 1 shows an exam-
ple dependency tree for the sentence �John found a solution to the problem.� The
links in the diagram represent dependency relationships. The direction of a link is
from the head to the modifier in the relationship. Labels associated with the links
represent types of dependency relations. Table 1 lists a subset of the dependency

1 Available at http://www.cs.ualberta.ca/~lindek/minipar.htm

found
subj

John
obj

solution
det mod

toa

problem
det

the

pcomp

Figure 1. The dependency tree for the sentence John
found a solution to the problem extracted by Minipar .

relations in Minipar outputs. For the sake of space, from now on we represent
dependency trees in a more compact form as follows:

John found a solution to the problem.
det detsubj

obj
mod

pcomp

Like chart parsers, Minipar constructs all possible parses of an input sentence.

However, only the highest ranking parse tree is output. Although the grammar is
manually constructed, the selection of the best parse tree is guided by the statisti-
cal information obtained by parsing a 1GB newspaper corpus with Minipar. The
statistical ranking of parse trees is based on the following probabilistic model.
The probability of a dependency tree is defined as the product of the probabilities
of the dependency relationships in the tree. Formally, given a tree T with root
root consisting of D dependency relationships (headi, relationshipi, modifieri),
the probability of T is given by:

 () () ()∏
=

=
D

i
iii headmodifieriprelationshProotPTP

1

|,

where P(relationshipi, modifieri | headi) is obtained using Maximum Likelihood
Estimation (MLE).

Minipar parses newspaper text at about 500 words per second on a Pentium-III
700Mhz with 500MB memory. Evaluation with the manually parsed SUSANNE
corpus (Sampson, 1995) shows that about 89% of the dependency relationships
in Minipar outputs are correct. The recall of Minipar output, defined as the per-
centage of dependency relationships in the SUSANNE corpus that are extracted
by Minipar, varies a great deal depending on the genre of the input document
from 80% (novels) to 87% (news reportage). This accuracy is comparable to
other broad-coverage English parsers (Collins, 1996; Charniak, 2000).

Table 1. A subset of the dependency relations in Minipar outputs.

RELATION DESCRIPTION EXAMPLE

appo appositive of a noun the CEO, John

det determiner of a noun the dog

gen genitive modifier of a noun John’s dog

mod adjunct modifier of any type of head tiny hole

nn prenominal modifier of a noun station manager

pcomp complement of a preposition in the garden

subj subject of a verb John loves Mary.

sc small clause complement of a verb She forced him to resign

3.2 Paths in Dependency Trees

In the dependency trees generated by Minipar, prepositions are represented by
nodes. We apply a simple transformation rule to connect the prepositional com-
plement directly to the words modified by the preposition. We name this direct
relationship with the preposition. Figure 2 gives an example for the phrase �solu-
tion to the problem� in which the two links in part (a) are replaced with a direct
link shown in part (b).

After the transformation, each link between two words in a dependency tree
represents a direct semantic relationship. A path allows us to represent indirect
semantic relationships between two content words. We name a path by concate-
nating dependency relationships and words along the path, excluding the words
at the two ends. For the sentence in Figure 1, the path between John and problem
is named: N:subj:V!find"V:obj:N"solution"N:to:N (meaning �X finds solu-
tion to Y�). The reverse path of the above path can be written as:
N:to:N!solution!N:obj:V!find" V:subj:N. The root of both paths is find. A
path begins and ends with two dependency relations. We call them the two slots
of the path: SlotX on the left-hand side and SlotY on the right-hand side. The
words connected by the path are the fillers of the slots. For example, John fills
the SlotX of N:subj:V!find"V:obj:N"solution"N:to:N and problem fills the
SlotY. The reverse is true for N:to:N!solution!N:obj:V!find"V:subj:N. In a
path, dependency relations that are not slots are called internal relations. For
example, find"V:obj:N"solution is an internal relation in the previous path.

We impose a set of constraints on the paths to be extracted from text for the
following reasons:

• most meaningful inference rules involve only paths that satisfy these
conditions;

(a) Before transformation rule: solution to the problem
detmod

pcomp

solution to the problem
det

to

(b) After transformation rule:

Figure 2. Effect of the transformation rule to connect the
prepositional complement to the words modified by the
preposition for the phrase solution to the problem.

• the constraints significantly reduce the number of distinct paths and,
consequently, the amount of computation required for computing simi-
lar paths; and

• the constraints alleviate the sparse data problem because long paths
tend to have very few occurrences.

The constraints are:
• slot fillers must be nouns because slots correspond to variables in in-

ference rules and we expect the variables to be instantiated by entities;
• any dependency relation that does not connect two content words (i.e.

nouns, verbs, adjectives or adverbs) is excluded from a path. E.g. in
Figure 1, the relation between a and solution is excluded;

• the frequency count of an internal relation must exceed a threshold;
and

• an internal relation must be between a verb and an object-noun or a
small clause. The relationship between find and solution in �John
found a solution to the problem� is an example of a verb-object rela-
tion. The relationship between force and resign is an example of a
verb-small clause relationship in the following sentence:

The board forced him to resign.
aux

subj
sc

det
subj

Consider the following sentence:

mod

They had previously bought bighorn sheep from Comstock.

subj

nn
obj

from

have

The paths extracted from this sentence and their meanings are:

(a) N:subj:V!buy"V:from:N (X buys something from Y)
(b) N:subj:V!buy"V:obj:N (X buys Y)
(c) N:subj:V!buy"V:obj:N"sheep"N:nn:N (X buys Y sheep)
(d) N:nn:N!sheep!N:obj:V!buy"V:from:N (X sheep is bought from Y)
(e) N:obj:V!buy"V:from:N (X is bought from Y)

An inverse path is also added for each one above.

4 DIRT: Discovering Inference Rules from Text

A path is a binary relation between two entities. In this section, we present an
algorithm to automatically discover the inference relations between such binary
relations.

4.1 The Underlying Assumption

Most algorithms for computing word similarity from text corpus are based on a
principle known as the Distributional Hypothesis (Harris, 1985). The idea is that
words that tend to occur in the same contexts tend to have similar meanings.
Previous efforts differ in their representation of the context and in their formula
for computing the similarity between two sets of contexts. Some algorithms use
the words that occurred in a fixed window of a given word as its context while
others use the dependency relationships of a given word as its context (Lin,
1998). Consider the words duty and responsibility. There are many contexts in
which both of these words can fit. For example,

• duty can be modified by adjectives such as additional, administrative,
assigned, assumed, collective, congressional, constitutional, …, so can
responsibility;

• duty can be the object of verbs such as accept, articulate, assert, as-
sign, assume, attend to, avoid, become, breach, �, so can responsibil-
ity.

Based on these common contexts, one can statistically determine that duty and
responsibility have similar meanings.

In the algorithms for finding word similarity, dependency links are treated as
contexts of words. In contrast, our algorithm for finding inference rules treats the
words that fill the slots of a path as a context for the path. We make an assump-
tion that this is an extension to the Distributional Hypothesis:

Extended Distributional Hypothesis:
If two paths tend to occur in similar contexts, the meanings of the

paths tend to be similar.

For example, Table 2 lists a set of example pairs of words connected by the
paths N:subj:V!find"V:obj:N"solution"N:to:N (�X finds a solution to Y�)
and N:subj:V! solve"V:obj:N (�X solves Y�). As it can be seen from the table,
there are many overlaps between the corresponding slot fillers of the two paths.
By the Extended Distributional Hypothesis, we can then claim that the two paths
have similar meanings.

4.2 Triples

To compute the path similarity using the Extended Distributional Hypothesis, we
need to collect the frequency counts of all paths in a corpus and the slot fillers for
the paths. For each instance of a path p that connects two words w1 and w2, we
increase the frequency counts of the two triples (p, SlotX, w1) and (p, SlotY, w2).
We call (SlotX, w1) and (SlotY, w2) features of path p. Intuitively, the more fea-
tures two paths share, the more similar they are.

We use a triple database (a hash table) to accumulate the frequency counts of
all features of all paths extracted from a parsed corpus. An example entry in the
triple database for the path

N:subj:V!pull"V:obj:N"body"N:from:N (�X pulls body from Y�)
is shown in Figure 3. The first column of numbers in Figure 3 represents the
frequency counts of a word filling a slot of the path and the second column of
numbers is the mutual information between a slot and a slot filler. Mutual infor-
mation measures the strength of the association between a slot and a filler. We
explain mutual information in detail in the next section. The triple database re-
cords the fillers of SlotX and SlotY separately. Looking at the database, one
would be unable to tell which SlotX filler occurred with which SlotY filler in the
corpus.

4.3 Mutual Information

Mutual information is a commonly used measure for the association strength
between two words (Church and Hanks, 1989). The mutual information between
two events x and y is given by:

 () ()
() ()yPxP

yxPyxmi ,log, = (1)

Mutual information is high when x and y occur together more often than by
chance. Mutual information compares two models for predicting the co-
occurrence of x and y: one is the MLE of the joint probability of x and y and the
other is some baseline model. In Equation (1), the baseline model assumes that x

Table 2. Sample slot fillers for two paths extracted from a newspaper corpus.

�X finds a solution to Y� �X solves Y�

SLOTX SLOTY SLOTX SLOTY

commission strike committee problem

committee civil war clout crisis

committee crisis government problem

government crisis he mystery

government problem she problem

he problem petition woe

I situation researcher mystery

legislator budget deficit resistance crime

sheriff dispute sheriff murder

and y are independent. Note that in information theory, mutual information refers
to the mutual information between two random variables rather than between two
events as used in this paper. The mutual information between two random vari-
ables X and Y is given by:

 () () ()
() ()∑∑

∈ ∈

=
X Yx y yPxP

yxPyxPYXMI ,log,, (2)

The mutual information between two random variables is the weighted average
of all possible combinations of events involving the two variables.

A triple involves three events: the path, the slot, and the filler. Equation (1) de-
fines the mutual information between two events. Alshawi and Carter (1994)
generalized Equation (1) to handle three events:

 () ()
() () ()zPyPxP

zyxPzyxmi ,,log,, = (3)

Equation (3) compares the MLE of the joint probability of x, y, and z with the
model that assumes independence between x, y, and z. Since paths, slots, and
fillers are not independent, we use a slightly more accurate baseline model,
which assumes that a path and a filler are conditionally independent given a slot.
We get:

 () ()
() () ()Slot|wPSlot|pPSlotP

w,Slot,pPlogw,Slot,pmi = (4)

X pulls body from Y:
 SlotX:
 diver 1 2.45
 equipment 1 1.65
 police 2 2.24
 rescuer 3 4.84
 resident 1 1.60
 who 2 1.32
 worker 1 1.37
 SlotY:
 bus 2 3.09
 coach 1 2.05
 debris 1 2.36
 feet 1 1.75
 hut 1 2.73
 landslide 1 2.39
 metal 1 2.09
 wreckage 3 4.81

Figure 3. An example entry in the triple database for the path �X
pulls body from Y�.

where p is a path, Slot is either SlotX or SlotY, and w is a filler.
We use the notation |p, SlotX, w| to denote the frequency count of the triple (p,

SlotX, w), |p, SlotX, *| to denote ∑
∈Ww

wSlotXp ,, , and |*, *, *| to denote

∑
wsp

wsp
,,

,, . The mutual information of a triple (p, Slot, w) can be computed by

the formula:

 ()
wSlotSlotp

SlotwSlotp

Slot
wSlot

Slot
SlotpSlot

wSlotp

wSlotpmi
,*,,*,
,**,,,

log

,**,
,*,

,**,
,*,

,,*
,**,

,,*
,,

log,,
×

×
== (5)

4.4 Similarity between Two Paths

Once the triple database is created, the similarity between two paths can be com-
puted in the same way that the similarity between two words is computed in (Lin,
1998). Essentially, two paths have high similarity if there are a large number of
common features. However, not every feature is equally important. For example,
the word he is much more frequent than the word sheriff. Two paths sharing the
feature (SlotX, he) is less indicative of their similarity than if they shared the
feature (SlotX, sheriff). The similarity measure proposed in (Lin, 1998) takes this
into account by computing the mutual information between a feature and a path.

The similarity between a pair of slots: slot1 = (p1, s) and slot2 = (p2, s), is de-
fined as:

 ()
() ()() ()

() ()()()∑ ∑
∑
∈ ∈

∩∈

+

+
=

spTw spTw

spTspTw

wspmiwspmi

wspmiwspmi
slotslotsim

, , 21

,, 21

21

1 2

21

,,,,

,,,,
, (6)

where p1 and p2 are paths, s is a slot, T(pi, s) is the set of words that fill in the s
slot of path pi.

The similarity between a pair of paths p1 and p2 is defined as the geometric av-
erage of the similarities of their SlotX and SlotY slots:

 () () ()212121 ,,, SlotYSlotYsimSlotXSlotXsimppS ×= (7)

where SlotXi and SlotYi are path i�s SlotX and SlotY slots.

4.5 Finding the Most Similar Paths

Given a path, the discovery of inference rules is made by finding its most similar
paths. The challenge here is that there are a large number of paths in the triple
database. The database used in our experiments contains over 200,000 distinct

paths. Computing the similarity between every pair of paths is obviously imprac-
tical.

Given a path p, our algorithm for finding the most similar paths of p takes
three steps:

(a) Retrieve all the paths that share at least one feature with p and call
them candidate paths. This can be done efficiently by storing for each
word the set of slots it fills in.

(b) For each candidate path c, count the number of features shared by c
and p. Filter out c if the number of its common features with p is less
than a fixed percent (we used 1%) of the total number of features for p
and c. This step effectively uses a simpler similarity formula to filter
out some of the paths since computing mutual information is more
costly than counting the number of features. This idea has previously
been used in Canopy (McCallum et al., 2000).

Table 3. The top-50 most similar paths to �X solves Y�.

1. Y is solved by X 26. X clears up Y
2. X resolves Y 27. *X creates Y
3. X finds a solution to Y 28. *Y leads to X
4. X tries to solve Y 29. Y is eased between X
5. X deals with Y 30. X gets down to Y
6. Y is resolved by X 31. X worsens Y
7. X addresses Y 32. X ends Y
8. X seeks a solution to Y 33. *X blames something for Y
9. X do something about Y 34. X bridges Y
10. X solution to Y 35. X averts Y
11. Y is resolved in X 36. *X talks about Y
12. Y is solved through X 37. X grapples with Y
13. X rectifies Y 38. *X leads to Y
14. X copes with Y 39. X avoids Y
15. X overcomes Y 40. X solves Y problem
16. X eases Y 41. X combats Y
17. X tackles Y 42. X handles Y
18. X alleviates Y 43. X faces Y
19. X corrects Y 44. X eliminates Y
20. X is a solution to Y 45. Y is settled by X
21. X makes Y worse 46. *X thinks about Y
22. X irons out Y 47. X comes up with a solution to Y
23. *Y is blamed for X 48. X offers a solution to Y
24. X wrestles with Y 49. X helps somebody solve Y
25. X comes to grip with Y 50. *Y is put behind X

(c) Compute the similarity between p and the candidates that passed the
filter using equation (6) and output the paths in descending order of
their similarity to p.

Table 3 lists the Top-50 most similar paths to �X solves Y� generated by DIRT.
The ones tagged with an asterisk (*) are incorrect, as judged by the authors. Most
of the paths can be considered as paraphrases of the original expression.

The Extended Distributional Hypothesis, as with the original Distributional
Hypothesis, is a statement about general trend instead of individual instances.
There are plenty of exceptions in the text, as evidenced by the asterisk-tagged
paths in Table 3.

Table 4. First 15 questions from TREC-8.

QUESTION # QUESTION

Q1 Who is the author of the book, �The Iron Lady: A Biography of Margaret
Thatcher�?

Q2 What was the monetary value of the Nobel Peace Prize in 1989?

Q3 What does the Peugeot company manufacture?

Q4 How much did Mercury spend on advertising in 1993?

Q5 What is the name of the managing director of Apricot Computer?

Q6 Why did David Koresh ask the FBI for a word processor?

Q7 What debts did Qintex group leave?

Q8 What is the name of the rare neurological disease with symptoms such as: in-
voluntary movements (tics), swearing, and incoherent vocalizations (grunts,
shouts, etc.)?

Q9 How far is Yaroslavl from Moscow?

Q10 Name the designer of the shoe that spawned millions of plastic imitations,
known as �jellies�.

Q11 Who was President Cleveland's wife?

Q12 How much did Manchester United spend on players in 1993?

Q13 How much could you rent a Volkswagen bug for in 1966?

Q14 What country is the biggest producer of tungsten?

Q15 When was London's Docklands Light Railway constructed?

5 Experimental Results

Ideally, we would evaluate our system by injecting the inference rules into a full-
fledged question-answering system. However, at this point, we have not built
such a system. Therefore, we performed an evaluation of our algorithm by com-
paring the inference rules it generates with a set of human-generated paraphrases
of the first 15 questions in the TREC-8 Question-Answering Track, listed in Ta-
ble 4. TREC (Text REtrievial Conference) is a U.S. government sponsored com-
petition on information retrieval held annually since 1992. In the Question-
Answering Track, the task for participating systems is to find answers to natural-
language questions like those in Table 4.

5.1 Experimental Setup

We used Minipar to parse about 1GB of newspaper text (San Jose Mercury, Wall
Street Journal and AP Newswire from the TREC collection). Using the methods
discussed in Section 3, we extracted 7 million paths from the parse trees (231,000
unique) and stored them in a triple database.

5.2 Results

The second column of Table 5 shows the paths that Minipar identified from the
TREC-8 questions. For some questions, more than one path was identified. For
others, no path was found (represented by ∅ in Table 5).

We compare the output of our algorithm with a set of manually generated
paraphrases of the TREC-8 questions made available at ISI2. Table 6 gives the
paraphrases for Q1 and Q3.

We also extracted paths from the manually generated paraphrases. For some
paraphrases, an identical path is extracted. For example, �What things are manu-
factured by Peugeot?� and �What products are manufactured by Peugeot?� both
map to the path �X is manufactured by Y�. Additionally, some paraphrases do not
map to any paths. For example, one of the paraphrases of Q2 is the multi-sentence
query �When the Norwegian Nobel Committee issues a Peace Prize, it also gives
a financial award. How much was that award in 1989?� This paraphrase does
not seem to contain any variation of the path in the original question. The number
of paths for the manually generated paraphrases of TREC-8 questions is shown in
the third column of Table 5.

For each of the paths p in the second column of Table 5, we ran the DIRT al-
gorithm to compute its Top-40 most similar paths using the triple database. We
then manually inspected the outputs and classified each extracted path as correct
or incorrect. A path p' is judged correct if a sentence containing p' might contain
an answer to the question from which p was extracted. Consider question Q3 in

2 Available at http://www.isi.edu/~gerber/Variations2.txt

Table 4 where we have p = �X manufactures Y� and we find p' = �X’s Y factory�
as one of p�s Top-40 most similar paths. Since �Peugeot’s car factory� might be
found in some corpus, p' is judged correct. Note that not all sentences containing
p' necessarily contain an answer to Q3 (e.g. �Peugeot’s Sochaux factory� gives
the location of a Peugeot factory in France).

The fourth column in Table 5 shows the number of Top-40 most similar paths
classified as correct and the fifth column gives the intersection between columns
three and four. Finally, the last column in Table 5 gives the percentage of top-40
paths classified as correct.

Table 5. Evaluation of Top-40 most similar paths.

QUESTION PATHS MANUAL DIRT
(CORRECT)

INTERSECTION ACCURACY

Q1 X is author of Y 7 21 2 52.5%

Q2 X is monetary value of Y 6 0 0 0%

Q3 X manufactures Y 13 37 4 92.5%

X spend Y 7 16 2 40.0%Q4

spend X on Y 8 15 3 37.5%

Q5 X is managing director of Y 5 14 1 35.0%

X asks Y 2 23 0 57.5%

asks X for Y 2 14 0 35.0%

Q6

X asks for Y 3 21 3 52.5%

Q7 X leave Y 4 0 0 0%

Q8 X is disease with Y 5 0 0 0%

Q9 ∅ N/A N/A N/A N/A

Q10 X is designer of Y 5 7 2 17.5%

Q11 ∅ N/A N/A N/A N/A

Q12 ∅ N/A N/A N/A N/A

Q13 rent X for Y 14 16 1 40.0%

Q14 X is producer of Y 10 31 3 77.5%

Q15 ∅ N/A N/A N/A N/A

Table 6. Manually-generated paraphrases of questions 1 and 3 in TREC-8.

Q # PARAPHRASES

Q1 Who is the author of the book, �The Iron Lady: A Biography of Margaret Thatcher�?

 �The Iron Lady: A Biography of Margaret Thatcher� was the work of what writer?

 Name the author of Margaret Thatcher's biography which is called �The Iron Lady�.

 Name the writer of a Margaret Thatcher biography titled, �The Iron Lady�.

 What author penned, �The Iron Lady: A Biography of Margaret Thatcher�?

 What writer produced �The Iron Lady: A Biography of Margaret Thatcher�?

 Who authored �The Iron Lady: A Biography of Margaret Thatcher�?

 Who chronicled Margaret Thatcher's political career in �The Iron Lady�?

 Who wrote, �The Iron Lady: A Biography of Margaret Thatcher�?

Q3 What does the Peugeot company manufacture?

 What does the Peugeot company make?

 What does the Peugeot company produce?

 What line of business is Peugeot in?

 The Peugeot company is in what business?

 What things are manufactured by Peugeot?

 What products are manufactured by Peugeot?

 What goods or services are provided by Peugeot?

 What is manufactured by the Peugeot Company?

 What are the Peugeot company's products?

 Name a product from Peugeot.

 Name any Peugeot product.

 Name some products made by Peugeot.

 What are some examples of Peugeot products?

 What does Peugeot make?

 What is Peugeot a manufacturer of?

 What is Peugeot's main product?

 What kinds of things will we find in Peugeot's product line?

 What product does Peugeot make?

 What products will we find in a Peugeot catalog?

 What things does Peugeot manufacture?

 What will we find in a Peugeot catalog?

Table 7. Paths found for five of the 15 questions in TREC-8 and the variations discov-
ered manually and by DIRT.

Q PATHS MANUAL VARIATIONS DIRT VARIATIONS

Q1 X is author of Y Y is the work of X; X is the writer
of Y; X penned Y; X produced Y;
X authored Y; X chronicled Y; X
wrote Y

X co-authors Y; X is co-author of Y; X writes
Y; X edits Y; Y is co-authored by X; Y is
authored by X; X tells story in Y; X trans-
lates Y; X writes in Y; X notes in Y; �

Q3 X manufactures Y X makes Y; X produce Y; X is in
Y business; Y is manufactured by
X; Y is provided by X; Y is X's
product; Y is product from X; Y
is X product; Y is product made
by X; Y is example of X product;
X is manufacturer of Y; find Y in
X's product line; find Y in X
atalog

X produces Y; X markets Y; X develops Y; X
is supplier of Y; X ships Y; X supplies Y; Y is
manufactured by X; X is maker of Y; X
introduces Y; X exports Y; X makes Y; X
builds Y; X�s production of Y; X unveils Y; Y
is bought from X; X�s line of Y; X assembles
Y; X is Y maker; X�s Y factory; X�s Y pro-
duction; X is manufacturer of Y; X�s Y
division; X meets demand for Y; �

X spend Y X put Y into marketing; at X, Y
was spent; X invest Y; X pay Y;
Y is X's budget; Y is X's outlay; Y
is X's spending

X invests Y; X pays Y; X pays somebody Y;
X contributes Y; Y is spent by X; X allocates
Y; X wastes Y; X pours Y; X puts up Y; �

Q4

spend X on Y put X into Y; X was spent on Y;
invest X in Y; pay X for Y; X is Y
budget; X is Y outlay; X is
spending for Y; X is Y spending

X pays for Y; X spends something for Y;
X�s Y budget; X finances Y; X purchases Y;
X goes ahead with Y; �

X asks Y X request something from Y; X's
request to Y

X tells Y; X meets with Y; X informs Y;
X contacts Y; X writes to Y; �

asks X for Y requests Y from X; request to X
for Y

X grants somebody Y; X gives somebody Y;
Y is granted by X; X approves Y; X grants Y;
Y is sought from X; Y is received from X; �

Q6

X asks for Y X wants Y; X requests Y; X's
request for Y

X requests Y; X seeks Y; X�s request for Y;
X obtains Y; Y is requested by X; X solicits
Y; X requests for Y; X demands Y; X pleads
for Y; X wants Y; X presses for Y; X appeals
for Y; ...

Q14 X is producer of
Y

X is Y producing nation; X is Y
producer; X leads in Y produc-
tion; Y comes from X; X pro-
duces Y; X is leader in Y produc-
tion; produced Y in X; X bring Y
[to world markets]; X mines Y;
X tops list of Y production

X is Y producer; imports Y from X; X ships
Y; X�s Y export; X�s Y output; X�s Y produc-
tion; Y production in X; X�s Y industry; X�s
Y mine; X�s production of Y; Y is produced
in X; X is maker of Y; X produces Y; X�s Y
business; Y shipment from X; X supplies Y;
X exports Y; X�s Y reserve; Y is bought from
X; �

5.3 Observations

There is very little overlap between the automatically generated paths and the
paraphrases, even though the percentage of correct paths in DIRT outputs can be
quite high. This suggests that finding potentially useful inference rules is very
difficult for humans as well as machines. Table 7 shows some of the correct
paths among the Top-40 extracted by our system for five of the TREC-8 ques-
tions. Many of the variations generated by DIRT that are correct paraphrases are
missing from the manually generated variations, and vice versa. It is difficult for
humans to generate a diverse list of paraphrases, given a starting formulation and
no context. However, given the output of our system, humans can easily identify
the correct inference rules. Hence, at the least, our system would greatly ease the
manual construction of inference rules for a QA system.

The performance of DIRT varies a great deal for different paths. Usually, the
performance for paths with verb roots is much better than for paths with noun
roots. A verb phrase typically has more than one modifier3, whereas nouns usu-
ally take a smaller number of modifiers. When a word takes less than two modi-
fiers, it will not be the root of any path. As a result, paths with noun roots occur
less often than paths with verb roots, which explains the lower performance with
respect to paths with noun roots.

In Table 5, DIRT found no correct inference rules for three of the questions.
The paths for Q2 and Q8 do not have any entries in the triple database. The per-
formance for Q7 is poor for a different reason. Although the triple database con-
tains plenty of features for �X leaves Y�, all of the similar paths found by DIRT
refer to the travel sense of leave, such as �X flees Y� and �X visits Y�. In “Q7:
What debts did Qintex group leave?” the intended meaning of leave is �to cause
something to remain.�

Another source of error in our algorithm is exemplified by the following:
among the most similar paths of �X asks Y�, we have �X informs Y� (which is
correct), but also �Y asks X� and �Y informs X�. The reason is that both askers
and askees tend to be persons or organizations. Since the similarity of paths de-
pends totally on the similarity of their slots, slots with the same kind of fillers are
not distinguished in our algorithm. Predicting whether this type of error will hap-
pen in the outputs for a given path is easy. We can simply compute the similarity
between its SlotX and its SlotY. However, teasing out the incorrect inference rules
caused by this is still a problem.

6 Conclusion and Future Work

Better tools are necessary to tap into the vast amount of textual data that is grow-
ing at an astronomical pace. Knowledge about inference relationships between
natural language expressions is extremely important for question-answering and

3 In this paper, we use dependency grammar terminology where the term modifier refers to both
modifiers and arguments in X-bar Theory.

many other applications of natural language processing. To the best of our
knowledge, this is the first attempt to discover such knowledge automatically
from a large corpus of text. We introduced the Extended Distributional Hypothe-
sis, which states that paths in dependency trees have similar meanings if they
tend to connect similar sets of words. Treating paths as binary relations, our algo-
rithm is able to generate inference rules by searching for similar paths. Our ex-
perimental results show that the Extended Distributional Hypothesis can indeed
be used to discover very useful inference rules, many of which, though easily
recognizable, are difficult for humans to recall.

Many questions remain to be addressed. One is to recognize the polarity in in-
ference relationships. High similarity values are often assigned to relations with
opposite polarity. For example, �X worsens Y� has one of the highest similarity to
�X solves Y� according to equation (6). For some questions, this may be helpful
while for others it may cause confusion.

In another work (Lin and Pantel, 2001), we constructed semantic classes from
text corpus with an unsupervised algorithm. For example, the following are two
classes generated by our program (Nq1446 and Nq1471 are automatically gener-
ated class names):

Nq1446: coating, Resin, adhesive, sealant, plastic, material, chemi-
cal, polymer, product, "specialty chemical", paint, varnish,
packaging, lubricant, ceramic, laminate, dye, film, glue,
reagent, compound, pigment, wax, epoxy, sealer, lacquer,
ink, gasket, covering, insulator

Nq1471: "booster rocket", booster, rocket, "rocket engine", engine,
vehicle, motor, "propulsion system", tank, "fuel cell", in-
jector

These classes may be used to extend paths with constraints on the inference
rule�s variables. For example, instead of generating a rule �X manufactures Y ≈
X’s Y factory�, we may want to generate a rule with an additional clause: �X
manufactures Y ≈ X’s Y factory, where Y is in Nq1446 or Nq1471 or …�. The
�where� clause can be potentially discovered by generalizing the intersection of
the SlotY fillers of the two relations.

References
Alshawi, H. and Carter, D. 1994. Training and Scaling Preference Functions for Disambiguation.

Computational Linguistics, 20(4):635-648.
Anick, P.G. and Tipirneni, S. 1999. The Paraphrase Search Assistant: Terminological Feedback for

Iterative Information Seeking. In Proceedings of SIGIR-99. pp. 153-159. Berkeley, CA.
Arampatzis, A. T., Tsoris, T., Koster, C. H. A., and van der Weide, T. P. 1998. Phrase-based

infase-bas retrieval. Information Processing & Management, 34(6):693-707.
Barzilay, R., McKeown, K., and Elhadad, M. 1999. Information Fusion in the Context of Multi-

Document Summarization. In Proceedings of ACL-99. College Park, Maryland.

Berwick, R. C. 1991. Principles of Principle-Based Parsing. In Berwick, B. C., Abney, S. P., and
Tenny, C. (eds.), Principle-Based Parsing Computation and Psycholinguistics. pp. 1-38. Kluwer
Academic Publishers.

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of the North American
Chapter of the Association for Computational Linguistics. pp. 132-139. Seattle, WA.

Church, K. and Hanks, P. 1989. Word Association Norms, Mutual Information, and Lexicography.
In Proceedings of ACL-89. pp. 76-83. Vancouver, Canada.

Collins, M. J. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In
Proceedings of ACL-96. pp. 184-191. Santa Cruz, CA.

Dras, M. 1997. Reluctant Paraphrase: Textual Restructuring Under an Optimisation Model. In
Proceedings of PACLING-97. pp. 98-104. Ohme, Japan.

Dras, M. 1999. A meta-level Grammar: Redefining Synchronous TAGs for Translation and
Paraphrase. In Proceedings of ACL-99. pp. 80-97. College Park, Maryland.

Fabre, C. and Jacquemin, C. 2000. Boosting Variant Recognition with Light Semantics. In
Proceedings of COLING-2000. Sarrebrücken, Germany.

Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y., and Zamir,
O. 1998. Text Mining at the Term Level. In Proceedings of the 2nd European Symposium on
Principles of Data Mining and Knowledge Discovery. pp. 65-73. Nantes, France.

Harabagiu, S., Pasca, M., and Maiorano, S. 2000. Experiments with Open-Domain Textual
Question Answering. In Proceedings of COLING-2000. Sarrebrücken, Germany.

Harris, Z. 1985. Distributional Structure. In: Katz, J. J. (ed.), The Philosophy of Linguistics. New
York: Oxford University Press. pp. 26-47.

Hahn, U. and Schnattinger, K. 1998. Towards text knowledge engineering. In Proceedinfs of AAAI-
98. pp. 524-531. Menlo Park, California.

Hays, D. 1964. Dependency Theory: a Formalism and Some Observations. Language, 40:511-525.
Hearst, M. 1992. Automatic Acquisition of Hyponyms from Large Text Corpora. In Proceedings of

ACL-92. Nantes, France.
Hindle, D. 1990. Noun Classification from Predicate-Argument Structures. In Proceedings of ACL-

90. pp. 268-275. Pittsburgh, Pennsylvania.
Hudson, R. 1984. Word Grammar. Basil Blackwell Publishers Limited. Oxford, England.
Iordanskaja, L, Kittredge, R., and Polguere, A. 1991. Natural Language Generation in Artificial

Intelligence and Computational Linguistics. Kluwer. Boston, MA.
Jacquemin, C., Klavans, J. L., and Tzoukermann, E. 1997. Expansion of Multi-Word Terms for

Indexing and Retireval using Morphology and Syntax. In Proceedings of ACL-97. pp. 24-31.
Madrid, Spain.

Jacquemin, C., Klavans, J. L., and Tzoukermann, E. 1999. NLP for Term Variant Extraction: A
Synergy of Morphology, Lexicon, and Syntax. Natural Language Information Retrieval, T.
Strzalkowski, editor. pp. 25-74. Kluwer. Boston, MA.

Larsen, B. and Aone, C. 1999. Fast and effective text mining using linear-time document
clustering. In Proceedings of KDD-99. pp. 16-22. San Diego, CA.

Lin, D. 1993. Parsing Without OverGeneration. In Proceedings ACL-93. pp. 112-120. Columbus,
OH.

Lin, D. 1998. Extracting Collocations from Text Corpora. Proceedings of the Workshop on
Computational Terminology. pp. 57-63. Montreal, Canada.

Lin, D. and Pantel, P. 2001. Induction of Semantic Classes from Natural Language Text. To appear
in Proceedings of KDD-2001. San Francisco, CA.

Lin, S. H., Shih, C. S., Chen, M. C., et al. 1998. Extracting Classification Knowledge of Internet
Documents with Mining Term Associations: A Semantic Approach. In Proceedings of SIGIR-98.
Melbourne, Australia.

McCallum, A., Nigam, K., and Ungar, L. H. 2000. Efficient Clustering of High-Dimensional Data
Sets with Application to Reference Matching. In Proceedings of KDD-2000. Boston, MA.

Mel'čuk, I. A. 1987. Dependency Syntax: theory and practice. State University of New York Press.
Albany, NY.

Meteer, M. M. and Shaked, V. 1988. Strategies for Effective Paraphrasing. In Proceedings of
COLING-88. pp. 431-436 Budapest.

Miller, G. 1990. WordNet: An Online Lexical Database. International Journal of Lexicography,
1990.

Pereira, F., Tishby, N., and Lee, L. 1993. Distributional Clustering of English Words. In
Proceedings of ACL-93. pp. 183-190. Columbus, Ohio.

Rajman, M. and Besançon, R. 1997. Text Mining: Natural Language Techniques and Text Mining
Applications. In Proceedings of the seventh IFIP 2.6 Working Conference on Database
Semantics (DS-7).

Richardson, S. D. 1997. Determining Similarity and the Infering Relations in a Lexical Knowledge-
Base. Ph.D. Thesis. The City University of New York.

Robin, J. 1994. Revision-based Generation of Natural Language Summaries Providing Historical
Background. Ph.D. Dissertation. Columbia University.

Sampson, G. 1995. English for the Computer - The SUSANNE Corpus and Analytic Scheme.
Clarendon Press. Oxford, England.

Sparck Jones, K. and Tait, J. I. 1984. Automatic Search Term Variant Generation. Journal of
Documentation, 40(1):50-66.

