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ABSTRACT
We propose a system that determines the salience of entities
within web documents. Many recent advances in commer-
cial search engines leverage the identification of entities in
web pages. However, for many pages, only a small subset
of entities are central to the document, which can lead to
degraded relevance for entity triggered experiences. We ad-
dress this problem by devising a system that scores each
entity on a web page according to its centrality to the page
content. We propose salience classification functions that in-
corporate various cues from document content, web search
logs, and a large web graph. To cost-effectively train the
models, we introduce a soft labeling methodology that gen-
erates a set of annotations based on user behaviors observed
in web search logs. We evaluate several variations of our
model via a large-scale empirical study conducted over a
test set, which we release publicly to the research commu-
nity. We demonstrate that our methods significantly out-
perform competitive baselines and the previous state of the
art, while keeping the human annotation cost to a minimum.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

Keywords
Document aboutness, entity salience, content analysis.

1. INTRODUCTION
The concept of Salience or Aboutness has been investi-

gated in many fields of research, from linguistics to semi-
otics, and from sociology to psychology. While dictionary
definitions look deceptively simple (“most noticeable or im-
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portant” (OED), “state or condition of being prominent”
(Wikipedia)), the notion of salience is very hard to pin
down in practice. A number of observations around salience
might be uncontroversial, however: (1) Salience and rele-
vance/importance are not the same. An entity or notion
A in a text can be highly salient, yet unimportant to the
reader. (2) Salience is a function of the structure of a text,
and indirectly a function of the intention of the author, as
opposed to a function of the reader’s intent or needs.

Salience also has very practical implications on the Web:
People, entities, and content are increasingy linked in a“Web
of Things” paradigm [5]. However, in our samples we found
that fewer than 5% of entities on a page are salient to the
web page, making it very important to be able to distinguish
them from the remaining non-salient entities.

We propose scalable weakly-supervised models for learn-
ing to score entities according to their salience to a docu-
ment. We leverage web search logs to automatically acquire
soft labels as a supervision signal for our training data. We
train our models on a large number of web pages, leveraging
features from document content, page classifiers, and a web
graph. Finally we show empirical evidence, on data repre-
senting the HEAD and TAIL distributions of the web, that our
methods significantly outperform the previous state of the
art on various ranking and classification metrics. As this is
the first dataset created of its kind, we release it publicly to
the research community.

The major contributions of this paper are:

• We devise a notion of entity salience and frame the
problem of understanding the aboutness of a docu-
ment as determining the most salient entities in the
document;

• We model the task of entity salience detection as a
weakly supervised machine learned model, generating
labeled training data via usage behaviors found in web
search logs;

• We present empirical evidence that our system signif-
icantly outperforms previously established baselines;

• We publicly release test sets consisting of URLs and
their entity mentions randomly drawn from head and
tail distributions in a commercial web search engine
along with gold standard salience judgments.



2. RELATED WORK
Understanding the meaning or aboutness of a document

has received attention from both a theoretical [23, 12, 2]
and practical perspective. In the latter approaches, driven
by application-specific demands, computational models have
decomposed aboutness and focused on detecting aspects of
aboutness such as key terms [30, 13, 21], latent semantic
spaces/topics [18, 1], and summaries [25, 17, 10].

Most related to our work is the current state of the art
described in Paranjpe [21] where the focus is on the detection
of key terms in web pages. There are three key differences
between our proposed method and theirs. First, our notion
of document aboutness is entity-centric, i.e., we consider the
identification of salient entities, as opposed to salient terms
of any kind. Second, our soft labeling method is different
from theirs and we demonstrate that it outperforms it and is
more robust to effects of popularity and presentation order
of URLs in the search results page (SERP). Finally, our
feature set is a significant extension of the set of features
Paranjpe utilizes.

The keyword extraction task can be seen as related to en-
tity salience, where keywords and key phrases are a super-
set of salient entities in a document. Keyword extraction is
often addressed in the context of various document under-
standing tasks, most often in extraction based summariza-
tion or abstract generation [11, 20, 10], and more recently in
(online) contextual advertisement or keyword appraisal [30].
Linguistic cues, including syntactic, semantic and discourse
information for keyword extraction are investigated in [11],
[20], [12], [8] and [2], for example.

Term frequency statistics and term weighting schemes are
also commonly used to score the specificity/importance of a
term in information retrieval [19, Chapter 7]. The same idea
motivates the vector space model and its application in ad
hoc document retrieval, indexing and key phrase generation
[27, 26].

We use supervised machine learning to build our models of
entity salience, a method that has been used widely for vari-
ous tasks in web document processing. Machine learning of-
fers a principled way to calibrate signals from heterogeneous
sources, which is crucial when incorporating diverse (e.g.
document content, term-weighting, web graph) insights into
one system. A wide variety of tactics are employed in the
literature to overcome the bottleneck of acquiring supervi-
sion data, for a theoretical perspective on these approaches
see [31]. One well studied approach to obtain relevance-
related supervision for web document training data is the
use of web search logs: the click behavior that is recorded in
these logs can serve as implicit user feedback and hence indi-
cate relevance of a document to a user. This signal has been
exploited for relevance annotation in document retrieval sys-
tems [14, 15, 9, 24], for other web document tasks beyond
retrieval, i.e., [29], [16], [22], and [13]. In our system, we ex-
ploit web search logs by designing a soft labeling function for
entity salience that is based on user behavior information.

3. ENTITIES, SALIENCE AND WEB PAGES

3.1 Entity Salience
What constitutes an entity has been cause of many philo-

sophical debates. For our purposes, we consider something
an entity if it is of a type that has or reasonably could have
a Wikipedia page associated with it. This would include

people, places, companies, as well as events, concepts, and
famous dates.

We consider the following working assumptions in building
our entity salience ranking system:

• Local scoping: The salience of an entity can be solely
determined by how the entity is presented within the
document. In other words, entity salience can be ef-
fectively computed from the local context, or what is
available in the document itself.

• Invariable perception: Entity salience can be as-
sessed independently from the intentions or interests
of a user/reader, and independently from the prior im-
portance of the entity as it exists outside of the docu-
ment.

Entity salience is distinct from two other aspects of about-
ness: entity importance and entity relevance. The impor-
tance of an entity refers to its influence or substantiveness
outside of the scope of the document. For example, although
Barack Obama is a very important entity, he can be periph-
eral to some news stories. On the other hand, the relevance
of an entity is inherently subjective to the reader’s perspec-
tive and intent.

Although local scoping suggests that the evidence for en-
tity salience can be derived most effectively from the docu-
ment content, it is important to note that extra-document
information such as incoming anchor links and user click-
through data provide important signal, and will be leveraged
by our models. Also, by assuming the source of salience to
be local to a document, we limit the search space to those
entities in the document.

3.2 Salient Entities and Web Pages
We conducted a small manual inspection of web pages in

order to get a first perspective at the difficulty and scope of
our problem. We sampled 50 documents, randomly chosen
from a traffic-weighted sample of documents from a com-
mercial web search index. We examined the content of the
pages in a web browser and made a list of all entities and
their salience.

On average, fewer than 5% of the entities in each docu-
ment were deemed salient. We observed certain cues when
identifying salience. Unsurprisingly, salient entities tend to
be mentioned in the title, headings, and/or first paragraph,
and are frequently mentioned.

By our local scoping assumption, any salient entity is con-
tained in its document. Hence, a system that is capable of
identifying each entity in a document would serve as a can-
didate generator for a salience ranking system. We ran a
proprietary state-of-the-art NER system, trained using the
perceptron algorithm [4], on the content of the web docu-
ments. We then compared for each page the set of automat-
ically identified entities to the human annotation.

We found that in 91% of the documents, at least one of
the salient entities is in the candidate entity set identified
by our NER tagger. For over 90% of these pages, all the
human annotated salient entities are captured by our NER
engine. Therefore it is reasonable to use the NER system as
a candidate generator.

We next examined whether simple cues for entity salience
are so straightforward that a heuristic would suffice to iden-
tify them. We observed many cases where cues were not
reliable or conflicted with each other, making heuristic de-



sign a difficult proposition. For example, the presence of an
entity in a title string is often a good indicator for salience.
However, being included in the title (or in the first para-
graph) is neither a necessary nor a sufficient condition for
salience. Based on these observations, we believe that a
machine learned model that can combine evidence from a
multitude of signals is a better approach than developing
simple heuristics.

4. MODEL

4.1 Task Definition
Let D and E be the sets of all documents and entities

on the web, respectively. Let Ed ⊂ E be the set of entities
mentioned in d ∈ D. We formally define the aboutness task
as learning the function:

σ : D×E→ R (1)

where σ(d, e) reflects the salience of e in d1.
We denote the ranking of Ed according to σ as:

RS
d = (e1, ..., e|Ed| | ei ∈ Ed, σ(d, ei) ≥ σ(d, ei+1))

where pairs of entities with tied scores are ordered randomly.
We define the ranking function

Rσ : D×E→ N (2)

such that Rσ(d, e) equals the rank of e in RS
d
2.

4.2 Soft Labeling
Instead of manually labeled data we rely on a soft labeling

approach that uses behavioral signals from web users as a
proxy for salience annotation. Individual clicks in a web
search log from a commercial search engine indicate a user’s
interest in a URL based on their entity query, i.e., they
indicate the relevance of the entity in the URL to the user.
In aggregate, the combined interests for an entity/URL pair
will correlate with the entity being salient, since users are
less likely to search for an entity and then examine a page
that is not about that entity. This “soft label” is available
for pages that receive enough traffic to derive reliable user
click statistics, but the learned model uses features that are
independent of user behavior, hence it can generalize to the
tail of the distribution.

A simple click measure is Clickthrough Rate (CTR), i.e.
the rate at which users click on a URL given a query. Paran-
jpe [21] points out that CTR is very much biased towards the
top-ranked result on the SERP which tends to receive the
bulk of user clicks. Instead, they propose to use Click At-
tractivity (CA) as a search log based metric that correlates
with salience. CA for a term t and document d is defined
as:

CA(t, d) =
clicks(t, d)

clicks(t, d) + skips(t, d)
(3)

where clicks(t, d) is the number of times users clicked on d
for a query containing t, and skips(t, d) is the number of
times users clicked on another document d′ that is ranked
at a lower position than d, where d is in the top-5 results.
Both clicks and skips are aggregated over all queries that

1We fix σ(d, e) = 0 for all e /∈ Ed.
2Rσ(d, e) is not defined for e /∈ Ed.

contain t and lead to at least 32 instances where document
d is displayed in the SERP. In its original setting, CA was
used for any term t in a document. For this paper, only
terms that are entities are considered, i.e., t = e.

CA has the following problems, though: First, recency can
trump salience. Assume that entity e is involved in some re-
cent gossip news. The user will be most interested in the lat-
est gossip about e (which provides a good signal for salience)
but will hardly ever click on the IMDB or Wikipedia page
for e, although on these pages e is very salient. Second,
popularity can trump salience. Within a set of URLs that
are equally about e, some of the sites might be more pop-
ular than others (e.g., a celebrity home page will be more
popular than a page about her maintained by a fan.) This
will distort the CA score. Finally, CA is subject to position
bias similarly to CTR. If the user is generally more likely to
click on a URL in the top position, this also means that she
is less likely to skip that top position and hence that CA is
also influenced by position bias.

We propose a different soft labeling function that aggre-
gates over only the queries that lead to clicks on a URL
without taking the number of views (CTR) or the number
of skips (CA) into account. We define Entity Query Ratio
(EQR) for entity e and document d by looking at all queries
that lead to a click on d. Within that set of queries, we calcu-
late the ratio of the number of clicks from queries containing
e to the number of clicks from all queries. We define con-
taining here as an exact match between an entity string and
a query. In our experiments, this strict matching definition
performed better than a substring-based definition.

EQR(e, d) =
clicks(e, d)∑
q∈Q clicks(q, d)

(4)

where Q is the set of all queries and clicks(e, d) is rede-
fined as the number of times users clicked on d for a query
matching e.

4.3 Features and Learning Algorithm
We represent each entity/document pair 〈e, d〉 as a vec-

tor of features. At the highest level, there are three distinct
classes of features: (1) those that are computed from proper-
ties of e and the whole document collection D, labeled Fe,D;
(2) those that are solely computed from properties of d, la-
beled Fd; and (3) those that are computed from properties
of e in d, labeled Fe,d. Document features, Fd, further sub-
divide into categorical features representing the page classi-
fication of d, features of the document URL, and length fea-
tures. Entity/document features, Fe,d, are subcategorized
into structural features that relate e to the structure of d,
web graph features that indicate the frequency of e in inlinks
and outlinks, position features that capture the location of
e in d, and finally features that capture the frequency of e
in 17 different page segments that are automatically identi-
fied based on visual properties (see [3] for more details and
[28] for other work that used visual blocks as input). Novel
features considered in this paper include: Page classification
and segmentation features, more detailed position features,
and corpus features based on an offline corpus of documents
in the top domain of d.

We use regression and ranking learning to model CA and
EQR. We employ boosted decision trees [6] as our learning
algorithm. The hyperparameters are the number of itera-
tions, learning rate, minimum instances in leaf nodes, and



the number of leaves. The parameter tuning procedure is
described in Section 6.1.

5. EVALUATION METHODOLOGY

5.1 Test Set Construction
Let ρ be a graded relevance scoring function for a docu-

ment d and entity e:

ρ : D×E→ {MS,LS,NS} (5)

where for ρ(d, e):

• Most Salient (MS) indicates that d is mostly about
e, or e plays a prominent role in the content of d;

• Less Salient (LS) indicates that e plays an important
role in some parts of the content of d; and

• Not Salient (NS) indicates that d is not about e.

We define a test set T = {ρ,∆} where ∆ = {(d,Ed) : d ∈
D,Ed ⊂ E} is a collection of pairs of web pages and entities
for which we have a gold standard ρ.

We start by constructing a universe of web pages by min-
ing all the shared URLs on the full firehose of Twitter.com
during May 2012 (to ensure that we focus on URLs that are
actively shared and discussed). This set was narrowed down
by eliminating: (1) any URL that redirected to a query on a
search engine, (2) YouTube.com links (since salient entities
here are often trivial to identify), and (3) URLs that re-
ceived fewer than three clicks within six months. The final
set consists of over half a million URLs, for which we have
access to a full crawl of the content.

From this set of web pages, we produce 2414 manually
annotated test cases for our experiments, spanning two test
sets outlined below. Each test set consists of randomly sam-
pled web pages such that each page contains fifty or fewer en-
tities to facilitate manual annotation. The first set, labeled
HEAD, consists of a traffic-weighted random sample of web
pages from our universe of URLs, where the traffic weights
are estimated using the number of clicks each URL received
during a six month period. This set represents the head dis-
tribution of our URLs. The second test set, TAIL, consists
of a uniform random sample of web pages from our universe
of URLs. This set represents the long tail of the web.

For each web page in our test sets, we built the set of
entity mentions by running the Named Entity Recognizer,
described in Section 3.2, on the content of each page. There
are 1228 candidate entities in the HEAD set and 1186 in the
TAIL set. To complete HEAD and TAIL, we construct gold
standard relevance assessments, ρ, for each entity-document
pair. We used a crowdsourcing tool to collect relevance judg-
ments (MS, LS, or NS) from non-expert paid judges. For
each entity-document pair, we requested five judgments. We
removed all judgments from bad judges, which were identi-
fied as those whose mean judgment score was further than
two standard deviations from the mean of all judges. This
resulted in the removal of four judges for HEAD and seven for
TAIL. The task had fair agreement for both test sets, with
a Fleiss’ κ score of 0.29 on HEAD and 0.25 on TAIL. Three
expert judges then adjudicated the majority vote for each
entity-document pair.

The HEAD and TAIL test sets along with their gold standard
annotations are available at http://research.microsoft.com
/research/downloads/details/5a2ddfde-83f7-4962-9ad7-d80
cd5098f38/details.aspx.

5.2 Performance Metrics
To assess the quality of a salience function σ on a test

set T, we compute the aggregate performance against the
salience judgements given by the human judges. We consider
two types of applications. First, rank-sensitive applications,
such as those deriving relevance features for a search ranking
function, require the top-K most salient entities. For these,
classic IR metrics such as nDCG (normalized discounted
cumulative gain) and MAP (mean average precision) are
applicable [19]. Second, in class-sensitive applications, such
as highlighting the salient entities on a document, we require
all the salient entities on the page. For this class of applica-
tions, Precision, Recall, and F1 metrics are applicable.

Below we define nDCG and MAP with respect to a sys-
tem σ, its corresponding ranking function Rσ (Eq. 2), and
test set T.

nDCGT(σ) =
1

| T | ×
∑

(d,Rσ
d
)∈T

∑|Rσd|
r=1

2φtri(d,er)−1
log2(r+1)

IDCG(d,Ed)

where φtri(d, er) maps the relevance score of er in d to a
real-valued score (MS → 1.0, LS → 0.5, NS → 0) and
IDCG(d,Ed) is the ideal DCG if Ed was perfectly ranked.

MAPT(σ) =
1

| T |
×

∑
(d,Rσ

d
)∈T

∑|Rσd|
r=1 φbin(d, er)Prec(R

σ
d[1, r], d)∑|Rσ

d
|

r=1 φbin(d, er)

where Rσ
d[1, r] = {e1, ..., er|ei ∈ Rσd}, φbin(d, er) indicates if

the entity at rank r is salient or not in d, and:

Prec(R, d) =

∑|R|
r=1 φbin(d, er)

| R |

Recall and F1 follow trivially.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
We first ran our NER system on the content in our Web

Page Data, discarding those pages in our HEAD and TAIL

test sets, and associated with these pages all queries from
the US English market of Bing.com that led to a click on the
pages during a six month period. We computed the CA and
EQR scores for each entity. Many entity-URL pairs receive
a zero score because no query mentioning the entity leads
to any click on the URL. Although such an entity-URL pair
could in fact be salient (even with six months of web search
log data, there is sparsity in the tail), in most cases the
pair is non-salient. In our experiments, we tried configura-
tions that included all zero-scoring entity-URL pairs, none
of them, and balancing the number of zero-scoring pairs to
be equal to the number of non-zero-scoring pairs via random
sampling. The balanced configurations consistently and by
a large margin outperformed the others, and hereon we con-
sider only balanced configurations. For the EQR soft label,
our final training set contains 66,055 entity-URL pairs; for
the CA soft label the number of entity-URL pairs in the
training set is 48,7593.

3This discrepancy in number of training cases is due to the
fact that we only compute the CA label for documents in
the top 5 displayed search results, to keep the CA signal
sufficiently reliable.



HEAD TAIL
nDCG@1 nDCG@5 MAP@1 MAP@5 F1 nDCG@1 nDCG@5 MAP@1 MAP@5 F1

CAbase 0.49 0.54 0.28 0.33 0.55 0.43 0.46 0.27 0.32 0.42
EQRbase 0.51 0.54 0.20 0.28 0.55 0.43 0.46 0.12 0.27 0.42

CA TFIDF 0.66 0.73 0.38 0.46 0.63 0.54 0.57 0.29 0.38 0.48

CA PJP 0.70 0.80 0.42 0.51 0.66 0.60 0.65 0.35† 0.47 0.55

CA ALL RANK 0.80† 0.85‡ 0.52† 0.57 0.70 0.73‡ 0.72† 0.48† 0.54† 0.59†

CA ALL 0.80† 0.85† 0.52† 0.57† 0.70 0.65† 0.76‡ 0.40† 0.54† 0.61†

EQR TFIDF 0.60 0.71 0.32 0.43 0.59 0.56 0.58 0.31 0.40 0.49

EQR PJP 0.82‡ 0.81 0.54‡ 0.56† 0.69 0.65† 0.66† 0.40 0.46 0.56

EQR ALL RANK 0.80† 0.84† 0.52† 0.58† 0.75† 0.77‡ 0.74† 0.52‡ 0.56† 0.59†

EQR ALL 0.82‡ 0.85† 0.54‡ 0.58† 0.75† 0.73‡ 0.77‡ 0.48‡ 0.58‡ 0.64‡

Table 1: Model analysis on HEAD and TAIL against rank-sensitive metrics (nDCG and MAP) and classification-
sensitive metric F1. † indicates statistical significance over the soft labeling baselines and the tf.idf feature
configuration; ‡ further indicates statistical significance over CA PJP (significance assessed using Student’s
t-Test with p-value = 0.1). Bold indicates the highest achieved score on each metric.

For each soft-labeled entity-URL pair, we computed the
features described in Section 4.3. We used the Bing search
engine to compute features that require web graph data or
page classification. To set the hyperparameters of our re-
gression and ranking models from Section 4.3, we perform a
sweep of 144 combinations of parameter settings on a three-
fold cross validation, for each system configuration.

Each system that we train and evaluate consists of three
choices: soft labeling method (CA vs. EQR), feature set,
and model type (regression and ranking).

We consider the following five baselines against which to
test our systems:

• CAbase and EQRbase: The systems that use the CA
and EQR soft labels as their prediction (without a
learned model);

• CA TFIDF and EQR TFIDF: Regression models
using only the tf, df, tf.idf features.

• CA PJP: Current state-of-the-art model [21].

We report our results on the following system configurations:

• EQR PJP: Regression model with the feature set
from [21] with our soft labeling function.

• CA ALL and EQR ALL: Regression models with
all features.

• CA ALL RANK and EQR ALL RANK: Rank-
ing models with all features.

6.2 System Comparison
Table 1 lists the performance of our baseline and sys-

tem configurations on both the HEAD and TAIL datasets.
We report nDCG and MAP scores (at 1 and 5) and F1.
EQR ALL and EQR ALL RANK, our best configura-
tions, significantly outperform the soft labeling baselines,
on both HEAD and TAIL, by 37% and 51% on F1, respec-
tively. On TAIL, we improve on the previous state of the
art, CA PJP, significantly on all metrics, by 16% on F1.
On HEAD, we show significant improvement over CA PJP
in the first position on both nDCG and MAP.

In general, the HEAD is “easier” than the TAIL: Absolute
metrics are higher, and the choice of feature sets and soft
labeling function matters less. This is not surprising for two
reasons: (1) the soft label signal is reliable only in the head
but it is extremely sparse in the tail; and (2) the head is
represented dominantly in the training data. As [21] points

out, the strategy behind learning a salience model from a soft
label is to learn from the cases where we have a good super-
vision signal and to generalize to the cases in the tail. Given
this argument, our expectation was to see gains mostly in
the tail for our proposed soft labeling function and feature
set EQR ALL. The positive gains on the HEAD were unex-
pected. The choice of the soft labeling function is important:
On TAIL, EQR outperforms CA overall as a training signal.
On HEAD, the soft labeling technique matters less; using our
full feature set, both techniques yield similar performance
except on F1 where EQR outweighs CA. Using our rank
models, we observe par performance against the regression
models on HEAD. On TAIL, the rank models outperform re-
gression in the first position on nDCG and MAP.

Examining the precision/recall characteristics of the sys-
tems, we found that the TFIDF features underperform com-
pared to the other feature sets in all settings. The PJP fea-
ture set improves precision/recall in all cases against TFIDF,
but in a more pronounced fashion when used with the EQR
soft labels. The best precision/recall curves are obtained
from EQR ALL. The best system produces precision/recall
gains especially in the region where precision is greater than
0.7. At recall ∼ 0.6 the precision gain on HEAD is nearly 7.5
points, on tail it is nearly 10 points at ∼ 0.5 recall.

6.3 Contribution of Feature Families
Examination of the feature weights in EQR ALL reveals

that the strongest salience cues are the position and the fre-
quency of the entity in the document and anchor text. In the
model, 174 features receive non-zero weights. The top five
features are: the frequency of e in the anchor text, document
and title, and the df of e and offset of e in the document.
The next series of 37 features in order of feature weight is
a mix of page classification, position, URL, structural and
page segmentation features with no discernible prominence
of any of these families. The binary features representing top
level domains and page categories occur in the lower weight
area of the feature list, with the exception of the feature in-
dicating that the top level domain is Wikipedia - this feature
ranks 11th which is not surprising given the frequency and
highly specific structure of this domain. We also performed
feature ablation on EQR ALL to see how well a system
that does not have access to information that requires ei-
ther a sizeable web crawl or components that are typically
part of a commercial search engine would do. On HEAD,



the difference is minimal and not statistically significant,
except for F1 where EQR ALL outperforms EQR DOC.
In TAIL, however, EQR ALL achieves better results, with
significant gains in nDCG@1 and nDCG@5.

7. CONCLUSION
This paper formalizes and addresses the task of scoring

entity-URL pairs according to the salience of the entity in
the document. We propose a system that is cost-effective to
build and improves upon the state of the art. We propose
weakly-supervised learned models combined with a novel
method for automatically labeling large quantities of train-
ing data by leveraging usage behaviors found in web search
logs. This, along with an extensive feature set leads to sig-
nificant improvements over the current state of the art on
both head and tail distributions of the web. As no public
data exists to date to evaluate this task, we design and re-
lease to the research community a gold standard data set
with salience annotations, representing the head and tail
distributions of pages on the web.

For further details, we refer the reader to [7].
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