
Automatically Harvesting and
Ontologizing Semantic Relations

Patrick PANTEL a and Marco PENNACCHIOTTI b

a Information Sciences Institute,University of Southern California, 4676 Admiralty Way,
Marina del Rey, CA 90292 pantel@isi.edu

b Dept. of Computational Linguistics, Saarland University, Germany
pennacchiotti@coli.uni-sb.de

Abstract. With the advent of the Web and the explosion of available textual data,
it is key for modern natural language processing systems to access, represent and
reason over large amounts of knowledge in semantic repositories. Separately, the
knowledge representation and natural language processing communities have been
developing representations/engines for reasoning over knowledge and algorithms
for automatically harvesting knowledge from textual data, respectively. There is a
pressing need for collaboration between the two communities to provide large-scale
robust reasoning capabilities for knowledge rich applications like question answer-
ing. In this chapter, we propose one small step by presenting algorithms for har-
vesting semantic relations from text and then automatically linking the knowledge
into existing semantic repositories. Experimental results show better than state of
the art performance on both relation harvesting and ontologizing tasks.

Keywords. knowledge acquisition, relation extraction, ontology learning

1. Introduction

With the advent of the Web and the explosion of available textual data, it is key for
modern Natural Language Processing (NLP) systems to access, represent and reason
over large amounts of knowledge contained in semantic repositories.

Separately, the knowledge representation (KR) community has developed many for-
mal ontologies for use in various reasoning tasks such as planning and theorem proving,
and the natural language processing (NLP) community has developed several algorithms
for automatically harvesting knowledge from textual resources. Most mined resources
from NLP consist of very large but noisy and unstructured knowledge, making their use
in KR reasoning engines futile. Knowledge rich applications such as question answering
and information extraction would benefit greatly from the reasoning power of the KR
community and the breadth of knowledge extracted from the NLP community. There is
therefore a pressing need for the NLP community to not only harvest knowledge from
text, but also to link this knowledge into semantic repositories over which KR reasoning
engines can execute.

In this chapter, we present algorithms for both extracting semantic relations from
textual resources and for linking, or ontologizing, them into a semantic repository.



1.1. Exploiting Knowledge Resources

Recent attention to knowledge-rich problems such as question answering [1] and textual
entailment [2] has encouraged natural language processing researchers to develop algo-
rithms for automatically harvesting semantic resources. With seemingly endless amounts
of textual data at our disposal, we have a tremendous opportunity to automatically grow
semantic term banks and ontological resources.

Knowledge resources can be mainly divided in two types: textual resources and
structured resources. Textual resources include linguistic text collections, ranging from
large generic repositories such as the Web to specific domain texts such as collections of
texts or books on specific subjects. These repositories contain a large and ever growing
amount of information expressed implicitly in natural language texts. These resources
greatly vary in size, from the terabytes of data on the Web to the kilobytes of textual mate-
rial in electronic books. Structured resources consist of repositories in which knowledge
is explicit and organized in lists or graphs of entities. In contrast with textual resources,
structured resources are used to explicitly represent domain and generic knowledge, mak-
ing their inherent knowledge directly usable in applications. Structured resources vary
largely on their degree of internal structuring, and can be accordingly divided in two dif-
ferent classes: semantic repositories and lexical resources. The first class is formed by
highly structured resources that usually organize knowledge at a conceptual level (e.g.,
concepts, relations among concepts, situation types) or at a sense level (word senses and
relations among senses). Ontologies such as Mikrokosmos [3,4], DOLCE [5] and SUMO
[6], and situation repositories such as FrameNet [7] are good examples of the former,
while WordNet [8] is an example of the latter. Lexical resources are less structured re-
sources such as thesauri, lists of facts, lexical relation instances, lists of paraphrases,
and other flat lists of lexical objects. These resources usually organize knowledge at a
pure lexical level, and are in most cases built by using automatic or semi-automatic tech-
niques.

Two main issues must be addressed in order to use knowledge resources in appli-
cations: extract the implicit knowledge in textual resources (knowledge harvesting), and
make the knowledge of both textual and structured resource usable (knowledge exploita-
tion).

Regarding knowledge harvesting, harvesting algorithms are used to analyze textual
repositories and extract knowledge in the form of lexical resources. NLP researchers have
developed many algorithms for mining knowledge from text and the Web, including facts
[9], semantic lexicons [10], concept lists [11], and word similarity lists [12]. Many recent
efforts have also focused on extracting binary semantic relations between entities, such
as entailments [13], is-a [14], part-of [15], and other relations. Relational knowledge is
in fact crucial in many applications. Unfortunately, most relation extraction algorithms
suffer from many limitations. First, they require a high degree of supervision. Secondly,
they are usually limited in breadth (they cannot be easily applied to different corpus sizes
and domains) and generality (they can harvest only specific types of relations).

So far, little attention has been spent on the issue of knowledge exploitation. As
Bos [16] outlined, whilst lexical resources are potentially useful, their successful use in
applications has been very limited due to a variety of problems. For example, question
answering (QA) systems based on logical proving could in theory improve their perfor-
mance by simply exploring knowledge in lexical resources which have been acquired in-



dipendently and semantic repositories. For instance, suppose a QA system must answer
the following question:

“When did James Dean die?”

Suppose the system could rely on a lexical resource formed by a list of entailment rules.
The lexical resource could contain the entailment kill(X, Y ) → die(Y ). The system
could then answer “1955”, by examining the Web and finding the snippet “In 1955,
actor James Dean was killed in a two-car collision near Cholame, Calif”.

Consider the following question:

“Who was Horus’ father?”

A system could answer “Osiris” from the snippet “It also hosted statues of Amon’s wife,
Mut, the goddess Isis, her husband, Osiris, and their son Horus”, by using a generic
world knowledge ontology containing the fact:

∀x(husband(x) → male(x))
∀x∀y(son(x) ∧ of(x, y) ∧male(y) → father(y) ∧ of(y, x))

The main reasons that limit the exploitation of existing resources stem from the nature
of semantic repositories and lexical resources. Although rich in structure and precision,
semantic repositories are difficult to use since they are built by hand and are therefore
limited in size and scope. In contrast, lexical resources represent a very large amount of
knowledge, but they suffer from low precision and structure.

1.2. Harvesting and Ontologizing Knowledge Desiderata

In order to leverage knowledge resources in NLP applications, it is necessary to improve
knowledge harvesting algorithms and to integrate the different types of resources in a
coherent framework (e.g., a semantic repository such as an ontology or term bank). An
ideal framework for knowledge harvesting and exploitation should then guarantee the
following desired properties:

• Generality. Knowledge harvesting should be able to extract as many relation types
as possible.

• Minimal supervision. Knowledge harvesting should be carried out using little or
no human intervention.

• Breadth. Harvesting algorithms should be adaptable to different corpus sizes, in
order to successfully extract knowledge from both large textual resources such as
the Web and small ones.

• Precision. Harvested knowledge must be precise. As lexical resources are usually
very noisy, they can be made more precise by both improving the harvesting al-
gorithms and by filtering erroneous information during the linking process to a
semantic repository.

• Domain knowledge coverage. Harvested knowledge must cover all the domain
knowledge.

• Closeness to language. As applications work on linguistic expressions, it is cru-
cial to map conceptual/sense knowledge to language. This can be achieved by
linking concepts/senses and relations in a semantic repository to terms and term
relations in a lexical resource.



• Structure. The structure of a semantic repository is a key aspect to expand the lex-
ical knowledge embedded in lexical resources and make them usable in applica-
tions. For example a simple list of part-of relation instances can be expanded by
using generalizations or synonymy information enclosed in a semantic repository
such a WordNet.

1.3. Harvesting and Ontologizing Knowledge in Practice

In this chapter, we present a pipeline of two systems which form a complete and co-
herent framework for knowledge harvesting and exploitation, by addressing the above
mentioned desired properties. In particular, our systems aim at addressing the issue of
extracting and ontologizing relational knowledge, which is an important component of
many NLP applications, as outlined in Section 1.1. The first of these two systems is
called Espresso and is described in Section 3. Espresso is a general-purpose, broad, and
accurate corpus harvesting algorithm requiring minimal supervision. The main algorith-
mic contribution is a novel method for exploiting generic patterns, which are broad cov-
erage noisy extraction patterns - i.e., patterns with high recall and low precision. Insofar,
difficulties in using these patterns have been a major impediment for minimally super-
vised algorithms resulting in either very low precision or very low recall. We propose
a method to automatically detect generic patterns and to separate their correct and in-
correct instances. The key intuition behind the algorithm is that given a set of reliable
(high precision) patterns on a corpus, correct instances of a generic pattern will fire more
with reliable patterns on a very large corpus, like the Web, than incorrect ones. Previous
work like Girju et Al. [15] that has made use of generic patterns through filtering has
shown both high precision and high recall, at the expensive cost of much manual seman-
tic annotation. Minimally supervised algorithms, like [17,18], typically ignore generic
patterns since system precision dramatically decreases from the introduced noise and
bootstrapping quickly spins out of control.

Secondly, is Section 4, we propose a system which adopts two alternative algorithms
for ontologizing binary semantic relations into WordNet. Formally, given an instance
(x, r, y) of a binary relation r between terms x and y, the ontologizing task is to identify
the WordNet senses of x and y where r holds. For example, the instance (proton, PART-
OF, element) ontologizes into WordNet as (proton#1, PART-OF, element#2). The first al-
gorithm that we explore, called the anchoring approach, was suggested as a promising
avenue of future work by Pantel [19]. This bottom up algorithm is based on the intuition
that x can be disambiguated by retrieving the set of terms that occur in the same relation
r with y and then finding the senses of x that are most similar to this set. The assumption
is that terms occurring in the same relation will tend to have similar meaning. We here
propose a measure of similarity to capture this intuition. In contrast to anchoring, our
second algorithm, called the clustering approach, takes a top-down view. Given a rela-
tion r, suppose that we are given every conceptual instance of r, i.e., instances of r in
the upper ontology like (particles#1, PART-OF, substances#1). An instance (x, r, y) can
then be ontologized easily by finding the senses of x and y that are subsumed by ances-
tors linked by a conceptual instance of r. For example, the instance (proton, PART-OF,
element) ontologizes to (proton#1, PART-OF, element#2) since proton#1 is subsumed
by particles and element#2 is subsumed by substances. The problem then is to automat-
ically infer the set of conceptual instances. For this purpose, we develop a clustering al-



gorithm for generalizing a set of relation instances to conceptual instances by looking up
the WordNet hypernymy hierarchy for common ancestors, as specific as possible, that
subsume as many instances as possible. An instance is then attached to those senses that
are subsumed by the highest scoring conceptual instances.

In Section 5 we report a complete experimental analysis of both systems. Exper-
imental evidence demonstrates that our two systems are successful in harvesting and
ontologizing relational knowledge by outperforming similar state of the art approaches.

2. Relevant Work

In this section, we review previous work in both relational knowledge harvesting and
ontologizing.

2.1. Relational Knowledge Harvesting

To date, most research on relation harvesting has focused on is-a and part-of. Approaches
fall into two categories: pattern- and clustering-based.

Most common are pattern-based approaches. Hearst [17] pioneered using patterns
to extract hyponym (is-a) relations. Manually building three lexico-syntactic patterns,
Hearst sketched a bootstrapping algorithm to learn more patterns from instances, which
has served as the model for most subsequent pattern-based algorithms.

Berland and Charniank [20] proposed a system for part-of relation extraction, based
on the Hearst [17] approach. Seed instances are used to infer linguistic patterns that
are used to extract new instances. While this study introduces statistical measures to
evaluate instance quality, it remains vulnerable to data sparseness and has the limitation
of considering only one-word terms.

Improving upon Berland and Charniank [20], Girju et Al. [15] employ machine
learning algorithms and WordNet [8] to disambiguate part-of generic patterns like “X’s
Y” and “X of Y”. This study is the first extensive attempt to make use of generic pat-
terns. In order to discard incorrect instances, they learn WordNet-based selectional re-
strictions, like “X(scene#4)’s Y(movie#1)”. While making huge grounds on improving
precision/recall, heavy supervision is required through manual semantic annotations.

Ravichandran and Hovy [14] focus on scaling relation extraction to the Web. A sim-
ple and effective algorithm is proposed to infer surface patterns from a small set of in-
stance seeds by extracting substrings relating seeds in corpus sentences. The approach
gives good results on specific relations such as birthdates, however it has low precision
on generic ones like is-a and part-of. Pantel and et Al. [21] proposed a similar, highly
scalable approach, based on an edit-distance technique, to learn lexico-syntactic patterns,
showing both good performance and computational efficiency. Espresso uses a similar
approach to infer patterns, but we make use of generic patterns and apply refining tech-
niques to deal with a wide variety of relations.

Other pattern-based algorithms have been proposed by Riloff and Shepherd [10],
who used a semi-automatic method for discovering similar words using a few seed ex-
amples, in KnowItAll [9] that performs large-scale extraction of facts from the Web, by
Mann [22] who used part of speech patterns to extract a subset of is-a relations involv-
ing proper nouns, by Downey et Al. [23] who formalized the problem of relation extrac-



tion in a coherent and effective combinatorial model that is shown to outperform pre-
vious probabilistic frameworks, by Snow et Al. [24], and in co-occurrence approaches
such as in Roark and Charniak [25]. Ciaramita et al.’s chapter in this book presents a
very nice approach to learning structured arbitrary binary semantic relations which is
fully unsupervised, domain independent and quite efficient since it ultimately relies on
named-entity tagging and dependency parsing which can be both solved in linear time.

Clustering approaches have so far been applied only to is-a extraction. These meth-
ods use clustering algorithms to group words according to their meanings in text, label
the clusters using its members’ lexical or syntactic dependencies, and then extract an
is-a relation between each cluster member and the cluster label. Caraballo [26] proposed
the first attempt which used conjunction and apposition features to build noun clusters.
Recently, Pantel and Ravichandran [18] extended this approach by making use of all
syntactic dependency features for each noun. The advantage of clustering approaches is
that they permit algorithms to identify is-a relations that do not explicitly appear in text,
however they generally fail to produce coherent clusters from fewer than 100 million
words; hence they are unreliable for small corpora.

2.2. Ontologizing Knowledge

Several researchers have worked on ontologizing semantic resources. Most recently, Pan-
tel [19] defined the task of ontologizing a lexical semantic resource as linking its terms
to the concepts in a WordNet-like hierarchy. He developed a method to propagate lexical
co-occurrence vectors to WordNet synsets, forming ontological co-occurrence vectors.
Adopting an extension of the distributional hypothesis [27], the co-occurrence vectors are
used to compute the similarity between synset/synset and between lexical term/synset.
An unknown term is then attached to the WordNet synset whose co-occurrence vector
is most similar to the term’s co-occurrence vector. Though the author suggests a method
for attaching more complex lexical structures like binary semantic relations, he focuses
only on attaching terms.

Basili et Al. [28] proposed an unsupervised method to infer semantic classes (Word-
Net synsets) for terms in domain-specific verb relations. These relations, such as (x, EX-
PAND, y) are first automatically learnt from a corpus. The semantic classes of x and y
are then inferred using conceptual density [29], a WordNet-based measure applied to all
instantiations of x and y in the corpus. Semantic classes represent possible common gen-
eralizations of the verb arguments. At the end of the process, a set of syntactic-semantic
patterns are available for each verb, such as:

(social_group#1, expand, act#2)
(instrumentality#2, expand, act#2)

The method is successful on specific relations with few instances (such as domain verb
relations) while its value on generic and frequent relations, such as part-of, was untested.

Girju et Al. [15] presented a highly supervised machine learning algorithm to infer
semantic constraints on part-of relations, such as (object#1, PART-OF, social_event#1).
These constraints are then used as selectional restrictions in harvesting part-of instances
from ambiguous lexical patterns, like “X of Y”. The approach shows high performance
in terms of precision and recall, but, as the authors acknowledge, it requires large human
effort during the training phase.



Others have also made significant additions to WordNet. For example, in eXtended
WordNet [30], the glosses in WordNet are enriched by disambiguating the nouns, verbs,
adverbs, and adjectives with synsets. Another work has enriched WordNet synsets with
topically related words extracted from the Web [31]. Finally, the general task of word
sense disambiguation [32] is relevant since there the task is to ontologize each term in a
passage into a WordNet-like sense inventory. If we had a large collection of sense-tagged
text, then our mining algorithms could directly discover WordNet attachment points at
harvest time. However, since there is little high precision sense-tagged corpora, methods
are required to ontologize semantic resources without fully disambiguating text.

3. Knowledge Harvesting: The Espresso Algorithm

Espresso is based on the framework adopted by Hearst [17]. It is a minimally supervised
bootstrapping algorithm that takes as input a few seed instances of a particular relation
and iteratively learns surface patterns to extract more instances. The key to Espresso
lies in its use of generic patterns, i.e., those broad coverage noisy patterns that extract
both many correct and incorrect relation instances. For example, for part-of relations,
the pattern “X of Y” extracts many correct relation instances like “wheel of the car” but
also many incorrect ones like “house of representatives”.

The key assumption behind Espresso is that in very large corpora, like the Web,
correct instances generated by a generic pattern will be instantiated by some reliable
patterns, where reliable patterns are patterns that have high precision but often very low
recall (e.g., “X consists of Y” for part-of relations). In this section, we describe the
overall architecture of Espresso, propose a principled measure of reliability, and give an
algorithm for exploiting generic patterns.

3.1. System Architecture

Espresso iterates between the following three phases: pattern induction, pattern rank-
ing/selection, and instance extraction. The algorithm begins with seed instances of a par-
ticular binary relation (e.g., is-a) and then iterates through the phases until it extracts
τ1 patterns or the average pattern score decreases by more than τ2 from the previous
iteration. In our experiments, we set τ1 = 5 and τ2 = 50%.

For our tokenization, in order to harvest multi-word terms as relation instances, we
adopt a slightly modified version of the term definition given by Justeson and Katz [33],
as it is one of the most commonly used in the NLP literature:

((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun

This term defintion allows to capture both simple expressions like underground
economy, and more complex ones like Iraqi National Joint Action Committee for Re-
forms.

3.1.1. Pattern Induction

In the pattern induction phase, Espresso infers a set of surface patterns P that connects
as many of the seed instances as possible in a given corpus. Any pattern learning algo-
rithm would do. We chose the state of the art algorithm described by Ravichandran and



Hovy [14] with the following slight modification. For each input instance {x, y}, we first
retrieve all sentences containing the two terms x and y. The sentences are then gener-
alized into a set of new sentences Sx,y by replacing all terminological expressions by a
terminological label, TR. For example:

“Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN and/CC x is/VBZ a/DT y”

is generalized as:

“Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y”

Term generalization is useful for small corpora to reduce data sparseness. Generalized
patterns are naturally less precise, but this is ameliorated by our filtering step described
in Section 3.2.

As in the original algorithm, all substrings linking terms x and y are then extracted
from Sx,y , and overall frequencies are computed to form P .

3.1.2. Pattern Ranking/Selection

In Ravichandran and Hovy [14], a frequency threshold on the patterns in P is set to
select the final patterns. However, low frequency patterns may in fact be very good. In
this work, instead of frequency, we propose a novel measure of pattern reliability, rπ ,
which is described in detail in Section 3.1.4. Espresso ranks all patterns in P according to
reliability rπ and discards all but the top-k, where k is set to the number of patterns from
the previous iteration plus one. In general, we expect that the set of patterns is formed by
those of the previous iteration plus a new one. Yet, new statistical evidence can lead the
algorithm to discard a pattern that was previously discovered.

3.1.3. Instance Extraction

In this phase, Espresso retrieves from the corpus the set of instances I that match any of
the patterns in P . In Section 3.1.4, we propose a principled measure of instance reliability
rι for ranking instances. Next, Espresso filters incorrect instances using the algorithm
proposed in Section 3.2 and then selects the highest scoring m instances according to rι

as input for the subsequent iteration. We experimentally set m = 200.
In small corpora, the number of extracted instances can be too low to guarantee

sufficient statistical evidence for the pattern discovery phase of the next iteration. In such
cases, the system enters an expansion phase, where instances are expanded as follows.

Web expansion: New instances of the patterns in P are retrieved from the Web, using
the Google search engine. Specifically, for each instance {x, y} ∈ I , the system creates
a set of queries, using each pattern in P instantiated with y. For example, given the
instance “Italy, country” and the pattern “Y such as X”, the resulting Google query will
be “country such as *”. New instances are then created from the retrieved Web results
(e.g. “Canada, country”) and added to I . The noise generated from this expansion is
attenuated by the filtering algorithm described in Section 3.2.

Syntactic expansion: New instances are created from each instance {x, y} ∈ I by
extracting sub-terminological expressions from x corresponding to the syntactic head of
terms. For example, the relation “new record of a criminal conviction part-of FBI report”
expands to: “new record part-of FBI report”, and “record part-of FBI report”.



3.1.4. Pattern and Instance Reliability

Intuitively, a reliable pattern is one that is both highly precise and one that extracts many
instances. The recall of a pattern p can be approximated by the fraction of input instances
that are extracted by p. Since it is non-trivial to estimate automatically the precision of a
pattern, we are wary of keeping patterns that generate many instances (i.e., patterns that
generate high recall but potentially disastrous precision). Hence, we desire patterns that
are highly associated with the input instances. Pointwise mutual information [34] is a
commonly used metric for measuring this strength of association between two events x
and y:

pmi(x, y) = log
P (x, y)

P (x)P (y)

We define the reliability rπ(p) of a pattern p, as its average strength of association across
each input instance i ∈ I , weighted by the reliability of each instance i:

rπ(p) =

∑

i∈I

pmi(i, p)
maxpmi

∗ rι(i)

|I|

where rι(i) is the reliability of instance i (defined below) and maxpmi is the maximum
pointwise mutual information between all patterns and all instances. rπ(p) ranges from
[0, 1]. The reliability of the manually supplied seed instances is rι(i) = 1. The pointwise
mutual information between instance i = {x, y} and pattern p is estimated using the
following formula:

pmi(i, p) = log
|x, p, y|

|x, ∗, y||∗, p ∗ |

where |x, p, y| is the frequency of pattern p instantiated with terms x and y and where
the asterisk (*) represents a wildcard. A well-known problem is that pointwise mutual
information is biased towards infrequent events. We thus multiply pmi(i, p) with the
discounting factor suggested by Pantel and Ravichandran [18].

Estimating the reliability of an instance is similar to estimating the reliability of
a pattern. Intuitively, a reliable instance is one that is highly associated with as many
reliable patterns as possible (i.e., we have more confidence in an instance when multiple
reliable patterns instantiate it). Hence, analogous to our pattern reliability measure, we
define the reliability rι(i) of an instance i as:

rι(i) =

∑

p∈P ′

pmi(i, p)
maxpmi

∗ rπ(p)

|P ′|

where rπ(p) is the reliability of pattern p (defined earlier) and maxpmi is as before. Note
that rι(i) and rπ(p) are recursively defined, where rι(i) = 1 for the manually supplied
seed instances.



3.2. Exploiting Generic Patterns

Generic patterns are high recall / low precision patterns (e.g, the pattern “X of Y” can
ambiguously refer to a part-of, is-a and possession relations). Using them blindly in-
creases system recall while dramatically reducing precision. Minimally supervised algo-
rithms have typically ignored them for this reason. Only heavily supervised approaches,
like Girju et Al. [15] have successfully exploited them.

Espresso’s recall can be significantly increased by automatically separating correct
instances extracted by generic patterns from incorrect ones. The challenge is to harness
the expressive power of the generic patterns while remaining minimally supervised.

The intuition behind our method is that in a very large corpus, like the Web, correct
instances of a generic pattern will be instantiated by many of Espresso’s reliable patterns
accepted in P . Recall that, by definition, Espresso’s reliable patterns extract instances
with high precision (yet often low recall). In a very large corpus, like the Web, we assume
that a correct instance will occur in at least one of Espresso’s reliable pattern even though
the patterns’ recall is low. Intuitively, our confidence in a correct instance increases when,
i) the instance is associated with many reliable patterns; and ii) its association with the
reliable patterns is high. At a given Espresso iteration, where PR represents the set of
previously selected reliable patterns, this intuition is captured by the following measure
of confidence in an instance i = {x, y}:

S(i) =
∑

p∈PR

Sp(i)× rπ(p)
T

where T is the sum of the reliability scores rπ(p) for each pattern p ∈ PR, and

Sp(i) = pmi(i, p) = log
|x, p, y|

|x, ∗, y| × |∗, p ∗ |
where pointwise mutual information between instance i and pattern p is estimated with
Google as follows:

Sp(i) ≈ |x, p, y|
|x| × |y| × |p|

An instance i is rejected if S(i) is smaller than some threshold τ . Although this filter-
ing may also be applied to reliable patterns, we found this to be detrimental in our ex-
periments since most instances generated by reliable patterns are correct. In Espresso,
we classify a pattern as generic when it generates more than 10 times the instances of
previously accepted reliable patterns.

4. Ontologizing Semantic Relations

The output of most relation harvesting algorithms, such as Espresso described in Sec-
tion 3, consists of flat lists of lexical semantic knowledge such as “Italy is-a country”
and “orange similar-to blue”. However, using this knowledge beyond simple keyword
matching, for example in inferences, requires it to be linked, or ontologized, into seman-
tic repositories such as ontologies or term banks like WordNet.



Given an instance (x, r, y) of a binary relation r between terms x and y, the ontolo-
gizing task is to identify the senses of x and y where r holds. In this work, we focus on
WordNet 2.0 senses, though any similar term bank would apply.

Let Sx and Sy be the sets of all WordNet senses of x and y. A sense pair, sxy , is
defined as any pair of senses of x and y: sxy = {sx, sy} where sx ∈ Sx and sy ∈ Sy .
The set of all sense pairs Sxy consists of all pairings between senses in Sx and Sy .

In order to attach a relation instance (x, r, y) into WordNet, one must:

• Disambiguate x and y, that is, find the subsets S′x ⊆ Sx and S′y ⊆ Sy for which
the relation r holds; and

• Instantiate the relation in WordNet, using the synsets corresponding to all correct
pairings between the senses in S′x and S′y. We denote this set of attachment points
as S′xy.

If Sx or Sy is empty, no attachments are produced.
For example, the instance (study, PART-OF, report) is ontologized into WordNet

through the senses S′x = {survey#1, study#2} and S′y = {report#1}. The final
attachment points S′xy are:

(survey#1, PART-OF, report#1)
(study#2, PART-OF, report#1)

Unlike common algorithms for word sense disambiguation, here it is important to take
into consideration the semantic dependency between the two terms x and y. For example,
an entity that is part-of a study has to be some kind of information. This knowledge about
mutual selectional preference (the preferred semantic class that fills a certain relation
role, as x or y) can be exploited to ontologize the instance.

In the following sections, we propose two algorithms for ontologizing binary se-
mantic relations.

4.1. Method 1: Anchor Approach

Given an instance (x, r, y), this approach fixes the term y, called the anchor, and then
disambiguates x by looking at all other terms that occur in the relation r with y. Based
on the principle of distributional similarity [27], the algorithm assumes that the words
that occur in the same relation r with y will be more similar to the correct sense(s) of
x than the incorrect ones. After disambiguating x, the process is then inverted with x as
the anchor to disambiguate y.

In the first step, y is fixed and the algorithm retrieves the set of all other terms X ′

that occur in an instance (x′, r, y), x′ ∈ X ′1. For example, given the instance (reflections,
PART-OF, book), and a resource containing the following relations:

(false allegations, PART-OF, book)
(stories, PART-OF, book)

(expert analysis, PART-OF, book)
(conclusions, PART-OF, book)

1For semantic relations between complex terms, like (expert analysis, PART-OF, book), only the head noun
of terms are recorded, like “analysis”. As a future work, we plan to use the whole term if it is present in
WordNet.



the resulting set X ′ would be: {allegations, stories, analysis, conclusions}. All possible
pairings, Sxx′ , between the senses of x and the senses of each term in X ′, called Sx′ , are
computed. For each sense pair {sx, sx′} in Sxx′ , a similarity score r(sx, sx′) is calculated
using WordNet:

r(sx, sx′) =
1

d(sx, sx′) + 1
× f(sx′)

where the distance d(sx, sx′) is the length of the shortest path connecting the two synsets
in the hypernymy hierarchy of WordNet, and f(sx′) is the number of times sense sx′

occurs in any of the instances of X ′. Note that if no connection between two synsets
exists, then r(sx, sx′) = 0. The overall sense score for each sense sx of x is calculated
as:

r(sx) =
∑

sx′∈Sx′

r(sx, sx′)

Finally, the algorithm inverts the process by setting x as the anchor and computes r(sy)
for each sense of y. All possible pairings of senses are computed and scored by aver-
aging r(sx) and r(sy). Pairings scoring higher than a threshold τ1 are selected as the
attachment points in WordNet. We experimentally set τ1 = 0.02.

4.2. Method 2: Clustering Approach

The main idea of the clustering approach is to leverage the lexical behaviors of the two
terms in an instance as a whole. The assumption is that the general meaning of the rela-
tion is derived from the combination of the two terms.

The algorithm is divided in two main phases. In the first phase, semantic clusters
are built using the WordNet senses of all instances. A semantic cluster is defined by the
set of instances that have a common semantic generalization. We denote the concep-
tual instance of the semantic cluster as the pair of WordNet synsets that represents this
generalization. For example the following two part-of instances:

(second section, PART-OF, Los Angeles-area news)
(Sandag study, PART-OF, report)

are in a common cluster represented by the following conceptual instance:

[writing#2, PART-OF, message#2]

since writing#2 is a hypernym of both section and study, and message#2 is a hypernym
of news and report2.

In the second phase, the algorithm attaches an instance into WordNet by using Word-
Net distance metrics and frequency scores to select the best cluster for each instance. A
good cluster is one that:

• achieves a good trade-off between generality and specificity; and

2Again, here, we use the syntactic head of each term for generalization since we assume that it drives the
meaning of the term itself.



• disambiguates among the senses of x and y using the other instances’ senses as
support.

For example, given the instance (second section, PART-OF, Los Angeles-area news) and
the following conceptual instances:

[writing#2, PART-OF, message#2]
[object#1, PART-OF, message#2]

[writing#2, PART-OF, communication#2]
[social_group#1, PART-OF, broadcast#2]

[organization#, PART-OF, message#2]

the first conceptual instance should be scored highest since it is both not too generic
nor too specific and is supported by the instance (Sandag study, PART-OF, report), i.e.,
the conceptual instance subsumes both instances. The second and the third conceptual
instances should be scored lower since they are too generic, while the last two should be
scored lower since the sense for section and news are not supported by other instances.
The system then outputs, for each instance, the set of sense pairs that are subsumed by
the highest scoring conceptual instance. In the previous example:

(section#1, PART-OF, news#1)
(section#1, PART-OF, news#2)
(section#1, PART-OF, news#3)

are selected, as they are subsumed by [writing#2, PART-OF, message#2]. These sense
pairs are then retained as attachment points into WordNet.

Below, we describe each phase in more detail.

4.2.1. Phase 1: Cluster Building

Given an instance (x, r, y), all sense pair pairings sxy = {sx, sy} are retrieved from
WordNet. A set of candidate conceptual instances, Cxy , is formed for each instance from
the pairing of each WordNet ancestor of sx and sy , following the hypernymy link, up to
degree τ2.

Each candidate conceptual instance, c = {cx, cy}, is scored by its degree of gener-
alization as follows:

r(c) =
1

(nx + 1)× (ny + 1)

where ni is the number of hypernymy links needed to go from si to ci, for i ∈ {x, y}.
r(c) ranges from [0, 1] and is highest when little generalization is needed.

For example, the instance (Sandag study, PART-OF, report) produces 70 sense pairs
since study has 10 senses and report has 7 senses. Assuming τ2 = 1, the instance sense
(survey#1, PART-OF, report#1) has the set of candidate conceptual instances reported in
Table 1.

Finally, each candidate conceptual instance c forms a cluster of all instances (x, r, y)
that have some sense pair sx and sy as hyponyms of c. Note also that candidate concep-
tual instances may be subsumed by other candidate conceptual instances. Let Gc refer to
the set of all candidate conceptual instances subsumed by candidate conceptual instance
c.



Cxy nx ny r(c)

(survey#1, PART-OF,report#1) 0 0 1

(survey#1, PART-OF,document#1) 0 1 0.5

(examination#1, PART-OF,report#1) 1 0 0.5

(examination#1, PART-OF,document#1) 1 1 0.25
Table 1. Example of conceptual instances for the instance sense (survey#1, PART-OF, report#1).

Intuitively, better candidate conceptual instances are those that subsume both many
instances and other candidate conceptual instances, but at the same time that have the
least distance from subsumed instances. We capture this intuition with the following
score of c:

score(c) =

∑

g∈Gc

r(g)

|Gc| × log|IC | × log|GC |

where Ic is the set of instances subsumed by c. We experimented with different variations
of this score and found that it is important to put more weight on the distance between
subsumed conceptual instances than the actual number of subsumed instances. Without
the log terms, the highest scoring conceptual instances are too generic (i.e., they are too
high up in the ontology).

4.2.2. Phase 2: Attachment Points Selection

In this phase, we utilize the conceptual instances of the previous phase to attach each
instance (x, r, y) into WordNet.

At the end of Phase 1, an instance can be clustered in different conceptual instances.
In order to select an attachment, the algorithm selects the sense pair of x and y that is sub-
sumed by the highest scoring candidate conceptual instance. It and all other sense pairs
that are subsumed by this conceptual instance are then retained as the final attachment
points.

As a side effect, a final set of conceptual instances is obtained by deleting from each
candidate those instances that are subsumed by a higher scoring conceptual instance. Re-
maining conceptual instances are then rescored using score(c). The final set of concep-
tual instances thus contains unambiguous sense pairs.

5. Experimental Results

In this section, we evaluate both the harvesting algorithm Espresso and our two algo-
rithms for ontologizing semantic relations.

5.1. Espresso Evaluation

Here, we present an empirical comparison of Espresso with three state of the art systems
on the task of extracting various semantic relations.



5.1.1. Experimental Setup

We perform our experiments using the following two datasets:

• TREC: This dataset consists of a sample of articles from the Aquaint (TREC-
9) newswire text collection. The sample consists of 5,951,432 words extracted
from the following data files: AP890101 - AP890131, AP890201 - AP890228,
and AP890310 - AP890319.

• CHEM: This small dataset of 313,590 words consists of a college level textbook
of introductory chemistry [35].

Each corpus is pre-processed using the Alembic Workbench POS-tagger [36].
Below we describe the systems used in our empirical evaluation of Espresso.

• RH02: The algorithm by Ravichandran and Hovy [14] described in Section 2.
• GI06: The algorithm by Girju et Al. [15] described in Section 2.
• PR04: The algorithm by Pantel [18] described in Section 2.
• ESP-: The Espresso algorithm using the pattern and instance reliability measures,

but without using generic patterns.
• ESP+: The full Espresso algorithm described in this work exploiting generic pat-

terns.

For ESP+, we experimentally set τ from Section 3.2 to τ = 0.4 for TREC, and τ = 0.3
for CHEM by manually inspecting a small set of instances.

Espresso is designed to extract various semantic relations exemplified by a given
small set of seed instances. We consider the standard is-a and part-of relations as well
as the following more specific relations:

• succession. This relation indicates that a person succeeds another in a position or
title. For example, George Bush succeeded Bill Clinton and Pope Benedict XVI
succeeded Pope John Paul II. We evaluate this relation on the TREC-9 corpus.

• reaction. This relation occurs between chemical elements/molecules that can be
combined in a chemical reaction. For example, hydrogen gas reacts with oxy-
gen gas and zinc reacts-with hydrochloric acid. We evaluate this relation on the
CHEM corpus.

• production. This relation occurs when a process or element/object produces a
result3. For example, ammonia produces nitric oxide. We evaluate this relation on
the CHEM corpus.

For each semantic relation, we manually extracted a small set of seed examples. The
seeds were used for both Espresso as well as RH02. Table 2 lists a sample of the seeds
as well as sample outputs from Espresso.

5.1.2. Precision and Recall

We implemented the systems outlined in Section 5.1.1, except for GI06, and applied
them to the TREC and CHEM datasets. For each output set, per relation, we evaluate the
precision of the system by extracting a random sample of instances (50 for the TREC
corpus and 20 for the CHEM corpus) and evaluating their quality manually using two

3Production is an ambiguous relation; it is intended to be a causation relation in the context of chemical
reactions.



Is-a (12) Part-Of (12) Succession (12) Reaction (13) Production (14)
Seeds wheat :: crop leader :: panel Khrushchev :: Stalin magnesium :: oxygen bright flame :: flares

George Wendt :: star city :: region Carla Hills :: Yeutter hydrazine :: water hydrogen :: metal hydrides
nitrogen :: element ion :: matter Bush :: Reagan aluminum metal :: oxygen ammonia :: nitric oxide
diborane :: substance oxygen :: water Julio Barbosa :: Mendes lithium metal :: fluorine gas copper :: brown gas

Espresso Picasso :: artist trees :: land Ford :: Nixon hydrogen :: oxygen electron :: ions
tax :: charge material :: FBI report Setrakian :: John Griesemer Ni :: HCl glycerin :: nitroglycerin
protein :: biopolymer oxygen :: air Camero Cardiel :: Camacho carbon dioxide :: methane kidneys :: kidney stones
HCl :: strong acid atom :: molecule Susan Weiss :: editor boron :: fluorine ions :: charge

Table 2. Sample seeds used for each semantic relation and sample outputs from Espresso. The number in the
parentheses for each relation denotes the total number of seeds used as input for the system.

human judges (a total of 680 instances were annotated per judge). For each instance,
judges may assign a score of 1 for correct, 0 for incorrect, and 1/2 for partially correct.
Example instances that were judged partially correct include “analyst is-a manager” and
“pilot is-a teacher”. The kappa statistic [37] on this task was K = 0.694. The precision
for a given set of instances is the sum of the judges’ scores divided by the total instances.

Although knowing the total number of correct instances of a particular relation in
any non-trivial corpus is impossible, it is possible to compute the recall of a system
relative to another system’s recall. Following Pantel et Al. [21], we define the relative
recall of system A given system B, RA|B , as:

RA|B =
RA

RB
=

CA

C
CB

C

=
CA

CB
=

PA × |A|
PB × |B|

where RA is the recall of A, CA is the number of correct instances extracted by A, C is
the (unknown) total number of correct instances in the corpus, PA is A’s precision in our
experiments, and |A| is the total number of instances discovered by A.

Tables 3-9 report the total number of instances, precision5, and relative recall6 of
each system on the TREC-9 and CHEM corpora. The relative recall is always given in
relation to the ESP- system. For example, in Table 3, RH02 has a relative recall of 5.31
with ESP-, which means that the RH02 system outputs 5.31 times more correct relations
than ESP- (at a cost of much lower precision). Similarly, PR04 has a relative recall of 0.23
with ESP-, which means that PR04 outputs 4.35 fewer correct relations than ESP- (also
with a smaller precision). We did not include the results from GI06 in the tables since
the system is only applicable to part-of relations and we did not reproduce it. However,
the authors evaluated their system on a sample of the TREC-9 dataset and reported 83%
precision and 72% recall (this algorithm is heavily supervised.)

In all tables, RH02 extracts many more relations than ESP-, but with a much lower
precision, because it uses generic patterns without filtering. The high precision of ESP-
is due to the effective reliability measures presented in Section 3.1.4.

5.1.3. Effect of Generic Patterns

Experimental results, for all relations and the two different corpus sizes, show that ESP-
greatly outperforms the other methods on precision. However, without the use of generic
patterns, the ESP- system shows lower recall in all but the production relation.

4The kappa statistic jumps to K = 0.79 if we treat partially correct classifications as correct.
5Because of the small evaluation sets, we estimate the 95% confidence intervals using bootstrap resampling

to be in the order of ± 10-15% (absolute numbers).
6Relative recall is given in relation to ESP-.



SYSTEM INSTANCES PRECISION REL RECALL

RH02 57,525 28.0% 5.31
PR04 1,504 47.0% 0.23
ESP- 4,154 73% 1.00
ESP+ 69,156 36.2% 8.26

Table 3. System performance: TREC/is-a.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 2556 25.0% 3.76
PR04 108 40.0% 0.25
ESP- 200 85.0% 1.00
ESP+ 1490 76.0% 6.66
Table 4. System performance: CHEM/is-a.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 12,828 35.0% 42.52
ESP- 132 80.0% 1.00
ESP+ 87,203 69.9% 577.22
Table 5. System performance: TREC/part-of.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 11,582 33.8% 58.78
ESP- 111 60.0% 1.00
ESP+ 5973 50.7% 45.47
Table 6. System performance: CHEM/part-of.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 49,798 2.0% 36.96
ESP- 55 49.0% 1.00
ESP+ 55 49.0% 1.00

Table 7. System performance: TREC/succession.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 6,083 30% 53.67
ESP- 40 85% 1.00
ESP+ 3102 91.4% 89.39

Table 8. System performance: CHEM/reaction.

SYSTEM INSTANCES PRECISION REL RECALL

RH02 197 57.5% 0.80
ESP- 196 72.5% 1.00
ESP+ 1676 55.8% 6.58

Table 9. System performance: CHEM/production.

As hypothesized, exploiting generic patterns using the algorithm from Section 3.2
substantially improves recall without much deterioration in precision. ESP+ shows one
to two orders of magnitude improvement on recall while losing on average below 10%
precision. The succession relation in Table 7 was the only relation where Espresso found
no generic pattern. For other relations, Espresso found from one to five generic patterns.
Table 5 shows the power of generic patterns where system recall increases by 577 times
with only a 10% drop in precision. In Table 8, we see a case where the combination of
filtering with a large increase in retrieved instances resulted in both higher precision and
recall.

In order to better analyze our use of generic patterns, we performed the following
experiment. For each relation, we randomly sampled 100 instances for each generic pat-
tern and built a gold standard for them (by manually tagging each instance as correct or
incorrect). We then sorted the 100 instances according to the scoring formula S(i) de-
rived in Section 3.2 and computed the average precision, recall, and F-score of each top-
K ranked instances for each pattern7. Due to lack of space, we only present the graphs
for four of the 22 generic patterns: “X is a Y” for the is-a relation of Table 3, “X in the
Y” for the part-of relation of Table 5, “X in Y” for the part-of relation of Table 6, and
“X and Y” for the reaction relation of Table 8. Figure 1 illustrates the results.

In each figure, notice that recall climbs at a much faster rate than precision decreases.
This indicates that the scoring function of Section 3.2 effectively separates correct and

7We can directly compute recall here since we built a gold standard for each set of 100 samples.



Figure 1. Precision, recall and F-score curves of the Top-K% ranking instances of patterns “X is a Y”
(TREC/is-a), “X in Y” (TREC/part-of ), “X in the Y” (CHEM/part-of ), and “X and Y” (CHEM/reaction).

incorrect instances. In Figure 1.a), there is a big initial drop in precision that accounts for
the poor precision reported in Table 3.

Recall that the cutoff points on S(i) were set to τ = 0.4 for TREC and τ = 0.3 for
CHEM. The figures show that this cutoff is far from the maximum F-score. An interest-
ing avenue of future work would be to automatically determine the proper threshold for
each individual generic pattern instead of setting a uniform threshold.

5.2. Ontologizing Evaluation

Here, we present an empirical evaluation of our two methods for ontologizing binary
semantic relations, presented in Section 4.

5.2.1. Experimental Setup

Researchers have developed many algorithms for harvesting semantic relations from cor-
pora and the Web. For the purposes of this work, we may choose any one of them and
manually validate its mined relations. We choose Espresso, the harvesting algorithm de-
scribed in Section 3.

Test Sets
We experiment with two relations: part-of and causation. The causation relation occurs
when an entity produces an effect or is responsible for events or results, for example
(virus, CAUSE, influenza) and (burning fuel, CAUSE, pollution). We manually built five
seed relation instances for both relations and apply Espresso to a dataset consisting of
a sample of articles from the Aquaint (TREC-9) newswire text collection. The sample
consists of 55.7 million words extracted from the Los Angeles Times data files. Espresso



extracted 1,468 part-of instances and 1,129 causation instances. We manually validated
the output and randomly selected 200 correct relation instances of each relation for on-
tologizing into WordNet 2.0.

Gold Standard
We manually built a gold standard of all correct attachments of the test sets in Word-
Net. For each relation instance (x, r, y), two human annotators selected from all sense
pairings of x and y the correct attachment points in WordNet. For example, for (syn-
thetic material, PART-OF, filter), the judges selected the following attachment points:
(synthetic material#1, PART-OF, filter#1) and (synthetic material#1, PART-OF, filter#2).
The kappa statistic [37] on the two relations together was K = 0.73.

Systems
The following three systems are evaluated:

• BL: the baseline system that attaches each relation instance to the first (most
common) Word-Net sense of both terms;

• AN: the anchor approach described in Section 4.1.
• CL: the clustering approach described in Section 4.2.

5.2.2. Precision, Recall and F-score

For both the part-of and causation relations, we apply the three systems described above
and compare their attachment performance using precision, recall, and F-score. Using
the manually built gold standard, the precision of a system on a given relation instance is
measured as the percentage of correct attachments and recall is measured as the percent-
age of correct attachments retrieved by the system. Overall system precision and recall
are then computed by averaging the precision and recall of each relation instance.

Table 10 and Table 11 report the results on the part-of and causation relations. We
experimentally set the CL generalization parameter τ2 to 5 and the τ1 parameter for AN
to 0.02.

SYSTEM PRECISION RECALL F-SCORE

BL 54.0% 31.3% 39.6%
AN 40.7% 47.3% 43.8%
CL 57.4% 49.6% 53.2%

Table 10. System performance on the part-of relation.

SYSTEM PRECISION RECALL F-SCORE

BL 45.0% 25.0% 32.1%
AN 41.7% 32.4% 36.5%
CL 40.0% 32.6% 35.9%

Table 11. System performance on the causation re-
lation.

5.2.3. Discussion

For both relations, CL and AN outperform the baseline in overall F-score. For part-of,
Table 10 shows that CL outperforms BL by 13.6% in F-score and AN by 9.4%. For
causation, Table 11 shows that AN outperforms BL by 4.4% on F-score and CL by 0.6%.

The good results of the CL method on the part-of relation suggest that instances
of this relation are particularly amenable to be clustered. The generality of the part-of
relation in fact allows the creation of fairly natural clusters, corresponding to different
sub-types of part-of, as those proposed by Winston et Al. [38]. The causation relation,



however, being more difficult to define at a semantic level [39], is less easy to cluster and
thus to disambiguate.

Both CL and AN have better recall than BL, but precision results vary with CL
beating BL only on the part-of relation. Overall, the system performances suggest that
ontologizing semantic relations into WordNet is in general not easy.

The better results of CL and AN with respect to BL suggest that the use of com-
parative semantic analysis among corpus instances is a good way to carry out disam-
biguation. Yet, the BL method shows surprisingly good results. This indicates that also
a simple method based on word sense usage in language can be valuable. An interesting
avenue of future work is to better combine these two different views in a single system.

The low recall results for CL are mostly attributed to the fact that in Phase 2 only
the best scoring cluster is retained for each instance. This means that instances with
multiple senses that do not have a common generalization are not captured. For example
the part-of instance (wings, PART-OF, chicken) should cluster both in [body_part#1,
PART-OF, animal#1] and [body_part#1, PART-OF, food#2], but only the best scoring
one is retained.

5.2.4. Conceptual Instances: Other Uses

Our clustering approach from section 4.2 is enabled by learning conceptual instances -
relations between mid-level ontological concepts. Beyond the ontologizing task, concep-
tual instances may be useful for several other tasks. In this Section, we discuss some of
these opportunities and present small qualitative evaluations.

Conceptual instances represent common semantic generalizations of a particular re-
lation. For example, below are two possible conceptual instances for the part-of relation:

[person#1, PART-OF, organization#1]
[act#1, PART-OF, plan#1]

The first conceptual instance in the example subsumes all the part-of instances in which
one or more persons are part of an organization, such as:

(president Brown, PART-OF, executive council)
(representatives, PART-OF, organization)

(students, PART-OF, orchestra)
(players, PART-OF, Metro League)

Below, we present three possible ways of exploiting these conceptual instances.

Support to Relation Extraction Tools
Conceptual instances may be used to support relation extraction algorithms such as
Espresso.

Most minimally supervised harvesting algorithm do not exploit generic patterns,
i.e. those patterns with high recall but low precision, since they cannot separate correct
and incorrect relation instances. For example, the pattern “X of Y” extracts many correct
relation instances like “wheel of the car” but also many incorrect ones like “house of
representatives”.

Girju et Al. [15] described a highly supervised algorithm for learning semantic con-
straints on generic patterns, leading to a very significant increase in system recall with-



CONCEPTUAL INSTANCES SCORE # INSTANCES INSTANCES

[multitude#3, PART-OF, group#1] 2.04 10 (ordinary people, PART-OF, Democratic Revolutionary Party)
(unlicensed people, PART-OF, underground economy)
(young people, PART-OF, commission)
(air mass, PART-OF, cold front)

[person#1, PART-OF, organization#1] 1.71 43 (foreign ministers, PART-OF, council)
(students, PART-OF, orchestra)
(socialists, PART-OF, Iraqi National Joint Action Committee)
(players, PART-OF, Metro League)

[act#2, PART-OF, plan#1] 1.60 16 (major concessions, PART-OF, new plan)
(attacks, PART-OF, coordinated terrorist plan)
(visit, PART-OF, exchange program)
(survey, PART-OF, project)

[communication#2, PART-OF, book#1] 1.14 10 (hints, PART-OF, booklet)
(soup recipes, PART-OF, book)
(information, PART-OF, instruction manual)
(extensive expert analysis, PART-OF, book)

[compound#2, PART-OF, waste#1] 0.57 3 (salts, PART-OF, powdery white waste)
(lime, PART-OF, powdery white waste)
(resin, PART-OF, waste)

Table 12. Sample of the highest scoring conceptual
instances learned for the part-of relation. For each
conceptual instance, we report score(c) , the number
of instances, and some example instances.

CONCEPTUAL INSTANCES SCORE # INSTANCES INSTANCES

[change#3, CAUSE, state#4] 1.49 17 (separation, CAUSE, anxiety)
(demotion, CAUSE, roster vacancy)
(budget cuts, CAUSE, enrollment declines)
(reduced flow, CAUSE, vacuum)

[act#2, CAUSE, state#3] 0.81 20 (oil drilling, CAUSE, air pollution)
(workplace exposure, CAUSE, genetic injury)
(industrial emissions, CAUSE, air pollution)
(long recovery, CAUSE, great stress)

[person#1, CAUSE, act#2] 0.64 12 (homeowners, CAUSE, water waste)
(needlelike puncture, CAUSE, physician)
(group member, CAUSE, controversy)
(children, CAUSE, property damage)

[organism#1, CAUSE, disease#1] 0.03 4 (parasites, CAUSE, pneumonia)
(virus, CAUSE, influenza)
(chemical agents, CAUSE, pneumonia)
(genetic mutation, CAUSE, Dwarfism)

Table 13. Sample of the highest scoring conceptual instances learned for the causation relation. For each
conceptual instance, we report score(c) , the number of instances, and some example instances.

out deteriorating precision. Conceptual instances can be used to automatically learn such
semantic constraints by acting as a filter for generic patterns, retaining only those in-
stances that are subsumed by high scoring conceptual instances. Effectively, conceptual
instances are used as selectional restrictions for the relation. For example, our system
discards the following incorrect instances:

(week, CAUSE, coalition)
(demeanor, CAUSE, vacuum)

as they are both part of the very low scoring conceptual instance [abstraction#6, CAUSE,
state#1].

Ontology Learning from Text
Each conceptual instance can be viewed as a formal specification of the relation at hand.



For example, Winston et Al. [38] manually identified six sub-types of the part-of rela-
tion: member-collection, component-integral object, portion-mass, stuff-object, feature-
activity and place-area. Such classifications are useful in applications and tasks where
a semantically rich organization of knowledge is required. Conceptual instances can be
viewed as an automatic derivation of such a classification based on corpus usage. More-
over, conceptual instances can be used to improve the ontology learning process itself.
For example, our clustering approach can be seen as an inductive step producing concep-
tual instances that are then used in a deductive step to learn new instances. An algorithm
could iterate between the induction/deduction cycle until no new relation instances and
conceptual instances can be inferred.

Word Sense Disambiguation
Word Sense Disambiguation (WSD) systems can exploit the selectional restrictions iden-
tified by conceptual instances to disambiguate ambiguous terms occurring in particular
contexts. For example, given the sentence:

“the board is composed by members of different countries”

and a harvesting algorithm that extracts the part-of relation (members, PART-OF, board),
the system could infer the correct senses for board and members by looking at their
closest conceptual instance. In our system, we would infer the attachment (member#1,
PART-OF, board#1) since it is part of the highest scoring conceptual instance [person#1,
PART-OF, organization#1].

Qualitative Evaluation
Table 12 and Table 13 list samples of the highest ranking conceptual instances obtained
by our system for the part-of and causation relations. Below we provide a small evalua-
tion to verify:

• the correctness of the conceptual instances. Incorrect conceptual instances such
as [attribute#2, CAUSE, state#4], discovered by our system, can impede WSD
and extraction tools where precise selectional restrictions are needed; and

• the accuracy of the conceptual instances. Sometimes, an instance is incorrectly
attached to a correct conceptual instance. For example, the instance (air mass,
PART-OF, cold front) is incorrectly clustered in [group#1, PART-OF, multitude#3]
since mass and front both have a sense that is descendant of group#1 and multi-
tude#3. However, these are not the correct senses of mass and front for which the
part-of relation holds.

For evaluating correctness, we manually verify how many correct conceptual instances
are produced by Phase 2 of the clustering approach described in Section 4.2. The claim is
that a correct conceptual instance is one for which the relation holds for all possible sub-
sumed senses. For example, the conceptual instance [group#1, PART-OF, multitude#3]
is correct, as the relation holds for every semantic subsumption of the two senses. An
example of an incorrect conceptual instance is [state#4, CAUSE, abstraction#6] since it
subsumes the incorrect instance (audience, CAUSE, new context). A manual evaluation
of the highest scoring 200 conceptual instances, generated on our test sets described in
Section 5.2.1, showed 82% correctness for the part-of relation and 86% for causation.



For estimating the overall clustering accuracy, we evaluated the number of correctly
clustered instances in each conceptual instance. For example, the instance (business peo-
ple, PART-OF, committee) is correctly clustered in [multitude#3, PART-OF, group#1] and
the instance (law, PART-OF, constitutional pitfalls) is incorrectly clustered in [group#1,
PART-OF, artifact#1]. We estimated the overall accuracy by manually judging the in-
stances attached to 10 randomly sampled conceptual instances. The accuracy for part-of
is 84% and for causation it is 76.6%.

6. Conclusions

In this chapter, we presented algorithms for both extracting semantic relations from tex-
tual resources and for linking, or ontologizing, them into a semantic repository. We pro-
posed a weakly-supervised, general-purpose, and accurate algorithm, called Espresso,
for harvesting binary semantic relations from raw text. The main contributions are: i)
a method for exploiting generic patterns by filtering incorrect instances using the Web;
and ii) a principled measure of pattern and instance reliability enabling the filtering algo-
rithm. We have empirically compared Espresso’s precision and recall with other systems
on both a small domain-specific textbook and on a larger corpus of general news, and
have extracted several standard and specific semantic relations: is-a, part-of, succession,
reaction, and production. Espresso achieves higher and more balanced performance than
other state of the art systems. By exploiting generic patterns, system recall substantially
increases with little effect on precision.

We then proposed two algorithms for automatically ontologizing binary semantic
relations into WordNet: an anchoring approach and a clustering approach. Experiments
on the part-of and causation relations showed promising results. Both algorithms out-
performed the baseline on F-score. Our best results were on the part-of relation where
the clustering approach achieved 13.6% higher F-score than the baseline. The induction
of conceptual instances has opened the way for many avenues of future work. We intend
to pursue the ideas presented in Section 5.2.4 for using conceptual instances to: i) support
knowledge acquisition tools by learning semantic constraints on extracting patterns; ii)
support ontology learning from text; and iii) improve word sense disambiguation through
selectional restrictions. Also, we will try different similarity score functions for both the
clustering and the anchoring approaches, as those surveyed in Corley and Mihalcea [40].

The algorithms described in this chapter may be applied to ontologize many lexical
resources of semantic relations, no matter the harvesting algorithm used to mine them. In
doing so, we have the potential to quickly enrich our ontologies, like WordNet, thus re-
ducing the knowledge acquisition bottleneck. It is our hope that we will be able to lever-
age these enriched resources, albeit with some noisy additions, to improve performance
on knowledge rich problems such as question answering and information extraction.

References

[1] M. Pasca and S. Harabagiu. The informative role of wordnet in open-domain question answering. In
Proceedings of the NAACL-2001 Workshop on WordNet and Other Lexical Resources: Applications,
Extensions and Customizations, pages 138–143, Pittsburgh, PA, 2001.



[2] M. Geffet and I. Dagan. The distributional inclusion hypotheses and lexical entailment. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005), Ann Arbor,
MI, 2005.

[3] K. Mahesh. Ontology development for machine translation: Ideology and methodology. Rl report mccs-
96-292, New Mexico State University, 1996.

[4] Mahesh K. O’Hara, T and S. Nirenburg. Lexical acquisition with wordnet and the mikrokosmos ontol-
ogy. In Proceedings of the COLING/ACL Workshop on Usage of WordNet in Natural Language Pro-
cessing Systems, Montreal, Canada, 1998.

[5] Guarino N. Gangemi, A., C. Masolo, A. Oltramari, and L. Schneider. Sweetening ontologies with dolce.
In Proceedings of Knowledge Engineering and Knowledge Management. Ontologies and the Semantic
Web, 13th International Conference, EKAW 2002, pages 166–181, Siguenza, Spain, 2002.

[6] I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the 2nd International
Conference on Formal Ontology in Information Systems (FOIS-2001), pages 2–9, Ogunquit, Maine,
2001.

[7] C. Baker, C. Fillmore, and J. Lowe. The berkeley framenet project. In Proceedings of the Joint Con-
ference of the International Committee on Computational Linguistics and the Association for Computa-
tional Linguistics (COLING/ACL-98), pages 86–90, Montreal, Canada, 1998.

[8] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
[9] O. Etzioni, M.J. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and

A. Yates. Unsupervised named-entity extraction from the web: An experimental study. Artificial Intel-
ligence, (165(1)):91–134, 2005.

[10] E. Riloff and J. Shepherd. A corpus-based approach for building semantic lexicons. In Proceedings of
2nd Conference on Empirical Methods in Natural Language Processing (EMNLP-2007)), pages 117–
124, Somerset, NJ, 1997.

[11] D. Lin and P. Pantel. Concept discovery from text. In Proceedings of the 20th International Conference
on Computational Linguistics (COLING-02), pages 577–583, Taipei, Taiwan, 2002.

[12] D. Hindle. Noun classification from predicate-argument structures. In Proceedings of the 28rd Annual
Meeting of the Association for Computational Linguistics (ACL-1990), pages 268–275, Pittsburgh, PA,
1990.

[13] H.; Dagan I.; Szpektor, I.; Tanev and B. Coppola. Scaling web-based acquisition of entailment relations.
In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages
41–48, Barcelona, Spain, 2004.

[14] D. Ravichandran and E.H. Hovy. Learning surface text patterns for a question answering system. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL-2002),
pages 41–47, Philadelphia, PA, 2002.

[15] R. Girju, A. Badulescu, and D. Moldovan. Automatic discovery of part-whole relations. Computational
Linguistics, (32(1)):83–135, 2006.

[16] J. Bos. Invited talk. In 2nd Workshop on Ontology Learning and Population: Bridging the Gap between
Text and Knowledge, Sydney, Australia, 2006. Association for Computational Linguistics.

[17] M. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th
International Conference on Computational Linguistics (COLING-92), pages 539–545, Nantes, France,
1992.

[18] P. Pantel and D. Ravichandran. Automatically labeling semantic classes. In Proceedings of Human
Language Technology conference / North American chapter of the Association for Computational Lin-
guistics annual meeting (HLT/NAACL-04), pages 321–328, Boston, MA, 2004.

[19] P. Pantel. Inducing ontological co-occurrence vectors. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL-2005), pages 125–132, Ann Arbor, MI, 2005.

[20] M. Berland and E. Charniak. Finding parts in very large corpora. In Proceedings of the 27th Annual
Meeting of the Association for Computational Linguistics (ACL-1999), pages 57–64, College Park, MD,
1999.

[21] P. Pantel, D. Ravichandran, and E.H. Hovy. Towards terascale knowledge acquisition. In Proceedings of
the 21st International Conference on Computational Linguistics (COLING-04), pages 771–777, Geneva,
Switzerland, 2004.

[22] G. S. Mann. Fine-grained proper noun ontologies for question answering. In Proceedings of SemaNet’
02: Building and Using Semantic Networks, pages 1–7, Taipei, Taiwan, 2002.

[23] D. Downey, O. Etzioni, and S. Soderland. A probabilistic model of redundancy in information extraction.



In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pages
1034–1041, Edinburgh, Scotland, 2005.

[24] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic patterns for automatic hypernym discovery.
In Proceedings of the 7th Neural Information Processing System Conference (NIPS-05), Vancouver,
Canada, 2005.

[25] B. Roark and E. Charniak. Noun-phrase co-occurrence statistics for semi-automatic semantic lexi-
con construction. In Proceedings of the 15th International Conference on Computational Linguistics
(COLING-98), pages 1110–1116, Montreal, Canada, 1998.

[26] S. Caraballo. Automatic acquisition of a hypernym-labeled noun hierarchy from text. In Proceedings
of the 37th Annual Meeting of the Association for Computational Linguistics (ACL-1999), pages 57–64,
College Park, MD, 1999.

[27] Z. Harris. Distributional structure, pages 26–47. New York: Oxford University Press, 1985.
[28] R. Basili, M.T. Pazienza, and M. Vindigni. Corpus-driven learning of event recognition rules. In Pro-

ceedings of Workshop on Machine Learning for Information Extraction workshop held in conjunction
with the 14th European Conference on Artificial Intelligence (ECAI-00), Berlin, Germany, 2000.

[29] E. Agirre and G. Rigau. Word sense disambiguation using conceptual density. In Proceedings of the
16th International Conference on Computational Linguistics (COLING-96), pages 16–22, Copenhagen,
Danmark, 1996.

[30] S. Harabagiu, G. Miller, and D. Moldovan. Wordnet 2 - a morphologically and semantically enhanced
resource. In Proceedings of SIGLEX-99, pages 1–8, University of Maryland, 1999.

[31] E. Agirre, G. Rigau, D. Martinez, and E.H. Hovy. Enriching wordnet concepts with topic signatures.
In Proceedings of the NAACL-2001 Workshop on WordNet and Other Lexical Resources: Applications,
Extensions and Customizations, Pittsburgh, PA, 2001.

[32] W. Gale, K. Church, and D. Yarowsky. A method for disambiguating word senses in a large corpus.
Computers and Humanities, (26):415–439, 1992.

[33] J. Justeson and S. Katz. Technical terminology: some linguistic properties and an algorithm for identi-
fication in text. Natural Language Engineering, (1):9–27, 1995.

[34] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley and Sons, 1991.
[35] T.L. Brown, H.E. LeMay, and B.E. Bursten. Chemistry: The Central Science. Prentice Hall, 2003.
[36] D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robinson, , and M. Vilain. Mixed-initiative develop-

ment of language processing systems. In Proceedings of Fifth Conference on Applied Natural Language
Processing (ANLP-97), pages 348–355, Washington D.C., 1997.

[37] S. Siegel and N. J. Castellan Jr. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill,
1998.

[38] M. Winston, R. Chaffin, and D. Hermann. A taxonomy of part-whole relations. Cognitive Science,
(11):417–444, 1987.

[39] R. Girju. Automatic detection of causal relations for question answering. In Proceedings of ACL Work-
shop on Multilingual Summarization and Question Answering, pages 107–114, Sapporo, Japan, 2003.

[40] C. Corley and R. Mihalcea. Measuring the semantic similarity of texts. In Proceedings of the ACL
Workshop on Empirical Modelling of Semantic Equivalence and Entailment, pages 13–18, Ann Arbor,
MI, 2005.


